Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 34(39)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35817027

RESUMO

The pyrochlore iridates (Eu1-xBix)2Ir2O7(0⩽x⩽1) undergo an anomalous negative lattice expansion for small Bi-doping (x⩽0.035) (region I) and a normal lattice expansion forx⩾0.1(region II); this is accompanied by a transition from an insulating (and magnetically ordered) to a metallic (and with no magnetic ordering) ground state. Here, we investigate (Eu1-xBix)2Ir2O7(0⩽x⩽1) using hard x-ray photoemission spectroscopy and x-ray absorption fine structure (XAFS) spectroscopy. By analyzing the Eu-L3, Ir-L3and Bi-L2&L3edges x-ray absorption near edge structure spectra and Eu-3dcore-level XPS spectra, we show that the metal cations retain their nominal valence, namely, Ir4+, Bi3+and Eu3+, respectively, throughout the series. The Ir-4fand Bi-4fcore-level XPS spectra consist of screened and unscreened doublets. The unscreened component is dominant In the insulating range (x⩽0.035), and in the metallic region (x⩾0.1), the screened component dominates the spectra. The Eu-3dcore-level spectra remain invariant under Bi doping. The extended XAFS data show that the coordination around the Ir remains well preserved throughout the series. The evolution of the valence band spectra near the Fermi energy with increasing Bi doping indicates the presence of strong Ir(5d)-Bi(6p) hybridization which drives the metal-to-insulator transition.

2.
J Phys Condens Matter ; 30(20): 205802, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29629875

RESUMO

Cubic half-Heusler Cu1-x Co x MnSb ([Formula: see text]) compounds have been investigated both experimentally and theoretically for their magnetic, transport and electronic properties in search of possible half metallic antiferromagnetism. The systems (Cu,Co)MnSb are of particular interest as the end member alloys CuMnSb and CoMnSb are semi metallic (SM) antiferromagnetic (AFM) and half metallic (HM) ferromagnetic (FM), respectively. Clearly, Co-doping at the Cu-site of CuMnSb introduces changes in the carrier concentration at the Fermi level that may lead to half metallic ground state but there remains a persistent controversy whether the AFM to FM transition occurs simultaneously. Our experimental results reveal that the AFM to FM magnetic transition occurs through a percolation mechanism where Co-substitution gradually suppresses the AFM phase and forces FM polarization around every dopant cobalt. As a result a mixed magnetic phase is realized within this composition range while a nearly HM band structure is developed already at the 10% Co-doping. Absence of T 2 dependence in the resistivity variation at low T-region serves as an indirect proof of opening up an energy gap at the Fermi surface in one of the spin channels. This is further corroborated by the ab initio electronic structure calculations that suggests that a nearly ferromagnetic half-metallic ground state is stabilized by Sb-p holes produced upon Co doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...