Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913168

RESUMO

With the versatile utility of bio-conjugated peptides and proteins in the fields of agriculture, food, cosmetics and pharmaceutical industry, the design of smart protocols to conjugate and modulate biomolecules becomes highly desirable. During this process, the most important consideration for biochemists is the retention of configurational integrity of the biomolecules. Moreover, this type of bioconjugation of peptide and protein becomes frivolous if the reaction is not performed with precise amino acid residues. Hence, chemo-selective, as well as site-selective reactions, that are biocompatible and possess an appropriate level of reactivity are necessary. Based on click chemistry, there are so many tyrosine (Y) conjugation strategies, such as sulfur-fluoride exchange (SuFEx), sulfur-triazole exchange (SuTEx), coupling with π-allyl palladium complexes, diazonium salts, diazodicarboxyamide-based reagents etc. Among these techniques, diazodicarboxyamide-based Y-conjugation, which is commonly known as the "tyrosine-click (Y-click) reaction", has met the expectations of synthetic and biochemists for the tyrosine-specific functionalization of biomolecules. Over the past one and a half decades, significant progress has been made in the classical organic synthesis approach, as well as its biochemical, photochemical, and electrochemical variants. Despite such progress and increasing importance, the Y-click reaction has not been reviewed to document variations in its methodology, applications, and broad utility. The present article aims to provide a summary of the approaches for the modulation of biomolecules at the hotspot of tyrosine residue by employing the Y-click reaction. The article also highlights its application for the mapping of proteins, imaging of living cells, and in the fields of analytical and medicinal chemistry.

2.
Org Biomol Chem ; 22(6): 1085-1101, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231504

RESUMO

Selective chemical reactions at precise amino acid residues of peptides and proteins have become an exploding field of research in the last few decades. With the emerging utility of bioconjugated peptides and proteins as drug leads and therapeutic agents, the design of smart protocols to modulate and conjugate biomolecules has become necessary. During this modification, the most important concern of biochemists is to keep intact the structural integrity of the biomolecules. Hence, a soft and selective biocompatible reaction environment is necessary. Electrochemistry, a mild and elegant tunable reaction platform to synthesize complex molecules while avoiding harsh and toxic chemicals, can provide such a reaction condition. However, this strategy is yet to be fully exploited in the field of selective modification of polypeptides. With this possibility, the use of electrochemistry as a reaction toolbox in peptide and protein chemistry is flourishing day by day. Unfortunately, there is no suitable review article summarizing the residue-specific modification of biomolecules. The present review provides a comprehensive summary of the latest manifested electrochemical approaches for the modulation of five redox-active amino acid residues, namely cysteine, tyrosine, tryptophan, histidine and methionine, found in peptides and proteins. The article also highlights the incredible potential of electrochemistry for the regio- as well as chemoselective bioconjugation strategy of biomolecules.


Assuntos
Peptídeos , Proteínas , Eletroquímica , Proteínas/química , Peptídeos/química , Aminoácidos , Metionina/química
3.
Sensors (Basel) ; 23(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687927

RESUMO

The V-band frequencies are becoming popular due to their application potential towards secure high data rate communications. This article reports bandwidth enhancement of an 11-cavity V-band Klystron amplifier employing staggered tuning. A systematic approach is presented to stagger-tune the periodically allocated multiple cavities of the Klystron operating at 60.1 GHz. Using the three-dimensional particle-in-cell (PIC) simulation, it is shown that, employing the proposed approach, the -3 dB bandwidth of the device (with peak tuned configuration) has been increased from 165 MHz to 540 MHz, demonstrating a 260% increment. The -1 dB bandwidth of the device is estimated to be 270 MHz. The proposed approach of stagger tuning may be employed for similar devices employing multiple RF cavities to meet the requirement of wide bandwidth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...