Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(4): 2423-2449, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478915

RESUMO

In this research article, two multicopper [Cu3] and [Cu6] clusters, [Cu3(cpdp)(µ3-SO4)(Cl)(H2O)2]·3H2O (1) and [Cu6(cpdp)2(µ2-O)(Cl)2(H2O)4]·2Cl (2) (H3cpdp = N,N'-bis[2-carboxybenzomethyl]-N,N'-bis[2-pyridylmethyl]-1,3-diaminopropan-2-ol), have been explored as potent antibacterial and antibiofilm agents. Their molecular structures have been determined by a single-crystal X-ray diffraction study, and the compositions have been established by thermal and elemental analyses, including electrospray ionization mass spectrometry. Structural analysis shows that the metallic core of 1 is composed of a trinuclear [Cu3] assembly encapsulating a µ3-SO42- group, whereas the structure of 2 represents a hexanuclear [Cu6] assembly in which two trinuclear [Cu3] motifs are exclusively bridged by a linear µ2-O2- group. The most striking feature of the structure of 2 is the occurrence of an unusual linear oxido-bridge, with the Cu3-O6-Cu3' bridging angle being 180.00°. Whereas 1 can be viewed as an example of a copper(II)-based compound displaying a rare µ3:η1:η1:η1 bridging mode of the SO42- group, 2 is the first example of any copper(II)-based compound showing an unsupported linear Cu-O-Cu oxido-bridge. Employing variable-temperature SQUID magnetometry, the magnetic susceptibility data were measured and analyzed exemplarily for 1 in the temperature range of 2-300 K, revealing the occurrence of antiferromagnetic interactions among the paramagnetic copper centers. Both 1 and 2 exhibited potent antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA BAA1717) and the clinically isolated culture of methicillin-resistant S. aureus (MRSA CI1). The mechanism of antibacterial and antibiofilm activities of these multicopper clusters was investigated by analyzing and determining the intracellular reactive oxygen species (ROS) generation, lipid peroxidation, microscopic observation of cell membrane disruption, membrane potential, and leakage of cellular components. Additionally, 1 and 2 showed a synergistic effect with commercially available antibiotics such as vancomycin with enhanced antibacterial activity. However, 1 possesses higher antibacterial, antibiofilm, and antivirulence actions, making it a potent therapeutic agent against both MRSA BAA1717 and MRSA CI1 strains.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Compostos Organoplatínicos , Cobre/farmacologia , Cobre/química , Staphylococcus aureus , Antibacterianos/farmacologia , Biofilmes
2.
Microb Pathog ; 188: 106548, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262493

RESUMO

A trinuclear Zn (II) complex, [(ZnL{N(CN)2})2Zn], termed complex 1 has been synthesized by the reaction of an aqueous solution of sodium dicyanamide to the methanolic solution of Zn (CH3COO)2, 2H2O and corresponding Schiff base (H2L) which is derived from 1:2 condensation of 1, 4 butane diamine with 3-ethoxy salicylaldehyde. Complex 1 is characterized by elemental analysis, IR, UV and Single X-ray diffraction study. Drug resistance is a growing global public health concern that has prompted researchers to look into advanced alternative treatment modalities. In this context, complex 1 has shown promising antibacterial and antibiofilm efficacy against gram-positive Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus strains. Complex 1 attenuated Staphylococcal biofilm formation by reducing several virulence factors including the formation of extracellular polysaccharide matrix, slime, haemolysin, staphyloxanthin, auto-aggregation, cell surface hydrophobicity, and motility. Notably, complex 1 mechanistically potentiated Reactive Oxygen Species (ROS) generation within the bacterial cells, leading to the damage of bacterial cell membrane followed by DNA leakage and thereby impeding the growth of Staphylococcus aureus. Furthermore, complex 1 significantly exhibited anticancer activity by reducing the growth of prostate adenocarcinoma cells. It obstructed the migration of cancer cells by potentiating apoptosis and arresting the cell cycle at the G2/M phase. In summary, complex 1 could act as a potent candidate for the generation of novel antibacterial, antibiofilm as well as anticancer treatment regimens for the management of drug-resistant biofilm-mediated Staphylococcus aureus infection and lethal prostate malignancy.


Assuntos
Cianamida , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Masculino , Humanos , Espécies Reativas de Oxigênio , Bases de Schiff/farmacologia , Antibacterianos/farmacologia , Staphylococcus aureus , Biofilmes , Bactérias , Infecções Estafilocócicas/microbiologia , Zinco/farmacologia , Testes de Sensibilidade Microbiana
3.
ACS Appl Mater Interfaces ; 15(19): 22781-22804, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37129921

RESUMO

A novel class of zinc(II)-based metal complexes, i.e., [Zn2(acdp)(µ-Cl)]·2H2O (1), [Zn2(acdp)(µ-NO3)]·2H2O (2), and [Zn2(acdp)(µ-O2CCF3)]·2H2O (3) (Cl- = chloride; NO3- = nitrate; CF3CO2- = trifluoroacetate) of anthracene-affixed multifunctional organic assembly, H3acdp (H3acdp = N,N'-bis[anthracene-2-ylmethyl]-N,N'-bis[carboxymethyl]-1,3-diaminopropan-2-ol), have emerged as promising antibacterial and antibiofilm agents in the domain of medicinal chemistry. Accordingly, complexes 1-3 were synthesized by utilizing H3acdp in combination with ZnCl2, Zn(NO3)2·6H2O, and Zn(CF3CO2)2·H2O respectively, in the presence of NaOH at ambient temperature. The complexation between H3acdp and Zn2+ was delineated by a combined approach of spectrophotometric and spectrofluorometric titration studies. The stoichiometry of acdp3-/Zn2+ in all three complexes is observed to be 1:2, as confirmed by spectrophotometric/spectrofluorometric titration data. Elemental analysis (C, H, N, Zn), molar conductance, FTIR, UV-vis, and thermoanalytical (TGA/DTA) data were effectively used to characterize these complexes. Besides, the structures of 1-3 were established by density functional theory (DFT) calculation using B3LYP/6-311G, specifying a self-assembled compact geometry with average Zn···Zn separation of 3.4629 Å. All three zinc complexes exhibited significantly high antibacterial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA BAA1717). However, complex 1 showed a more recognizable activity than 2 and 3, with minimum inhibitory concentration (MIC) values of 200, 350, and 450 µg/mL, respectively. The antimicrobial activity was tested by employing the minimum inhibitory concentration (MIC) and time-kill assay. The crystal violet (CV) assay and microscopic study were performed to examine the antibiofilm activity. As observed, complexes 1-3 had an effect on the production of extracellular polymeric substance (EPS), biofilm cell-viability, and other virulence factors such as staphyloxanthin and hemolysin production, autoaggregation ability, and microbial cell-surface hydrophobicity. Reactive oxygen species (ROS) generated due to inhibition of staphyloxanthin production in response to 1-3 were also analyzed. Moreover, complexes 1-3 showed an ability to damage the bacterial cell membrane due to accumulation of ROS resulting in DNA leakage. In addition, complexes 1-3 displayed a synergistic/additive activity with a commercially available antibiotic drug, vancomycin, with enhanced antibacterial activity. On the whole, our investigation disclosed that complex 1 could be a promising drug lead and attract much attention to medicinal chemists compared to 2 and 3 from therapeutic aspects.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Zinco/farmacologia , Zinco/química , Matriz Extracelular de Substâncias Poliméricas , Dióxido de Carbono , Espécies Reativas de Oxigênio/farmacologia , Antibacterianos/química , Biofilmes , Testes de Sensibilidade Microbiana
4.
Biochimie ; 197: 86-95, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35176353

RESUMO

Gynecological cancers that affect female reproductive tract, remain at the top of the global cancer burden list with high relapse rate and mortality. Notwithstanding development of several novel therapeutic interventions including poly-ADP-ribose polymerase inhibitors, this family of malignancies remain deadly. The human microbiome project demonstrated that dysbiosis of health resident microflora is associated with several pathologies including malignancies of the female reproductive tract and detailed characterization of species variation and host-microbe interaction could provide clues for identification of early diagnostic biomarker, preventive and therapeutic interventions. Emerging evidence suggests that several microbial signatures are significantly associated with gynecological cancers. An increased population of Proteobacteria and Firmicutes followed by significantly reduced Lactobacilli are associated with lethal epithelial ovarian cancer. Similarly, a constant association of elevated level of Atopobium vaginae, Porphyromonas somerae, Micrococci and Gardnerella vaginalis are observed in endometrial and cervical cancers. Moreover, human papilloma virus infection significantly augments colonization of pathogenic microbes including Sneathia sanguinegens, Anaerococcus tetradius, and Peptostreptococcus anaerobius and drives carcinoma of the cervix. Interestingly, microbial dysbiosis in female reproductive tract modulates expression of several microbial and immune-responsive genes such as TLR-4, TLR-5, TLR-6 and NOD-1. Therefore, stringent investigation into the microbial dysbiosis and its underlying mechanism could provide valuable cues for identification of early diagnostic biomarker, preventive and therapeutic interventions against rogue gynecological malignancies.


Assuntos
Neoplasias dos Genitais Femininos , Microbiota , Biomarcadores , Disbiose/microbiologia , Feminino , Humanos , Lactobacillus
5.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188619, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34454048

RESUMO

Phosphoinositide metabolism is crucial intracellular signaling system that regulates a plethora of biological functions including mitogenesis, cell proliferation and division. Phospholipase C gamma 1 (PLCγ1) which belongs to phosphoinositide-specific phospholipase C (PLC) family, is activated by many extracellular stimuli including hormones, neurotransmitters, growth factors and modulates several cellular and physiological functions necessary for tumorigenesis such as cell survival, migration, invasion and angiogenesis by generating inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) via hydrolysis of phosphatidylinositol 4,5-biphosphate (PIP2). Cancer remains as a leading cause of global mortality and aberrant expression and regulation of PLCγ1 is linked to a plethora of deadly human cancers including carcinomas of the breast, lung, pancreas, stomach, prostate and ovary. Although PLCγ1 cross-talks with many onco-drivers and signaling circuits including PI3K, AKT, HIF1-α and RAF/MEK/ERK cascade, its precise role in carcinogenesis is not completely understood. This review comprehensively discussed the status quo of this ubiquitously expressed phospholipase as a tumor driver and highlighted its significance as a novel therapeutic target in cancer. Furthermore, we have highlighted the significance of somatic driver mutations in PLCG1 gene and molecular roles of PLCγ1 in several major human cancers, a knowledgebase that can be utilized to develop novel, isoform-specific small molecule inhibitors of PLCγ1.


Assuntos
Neoplasias/enzimologia , Neoplasias/patologia , Fosfolipase C gama/metabolismo , Carcinogênese , Proliferação de Células/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...