Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36433175

RESUMO

The increase in the use of additive manufacturing (AM) has led to the need for filaments with specific and functional properties in face of requirements of structural parts production. The use of eco-friendly reinforcements (i.e., natural fibers) as an alternative to those more traditional synthetic counterparts is still scarce and requires further investigation. The main objective of this work was to develop short curauá fiber-reinforced polylactic acid (PLA) composites made via fused deposition modeling. Three different fiber lengths (3, 6, and 8 mm), and three concentrations in terms of weight percentage (2, 3.5, and 5 wt.%) were used to fabricate reinforced PLA filaments. Tensile and flexural tests in accordance with their respective American Society for Testing and Materials (ASTM) standards were performed. A thermal analysis was also carried out in order to investigate the thermal stability of the new materials. It was found that the main driving factor for the variation in mechanical properties was the fiber weight fraction. The increase in fiber length did not provide any significant benefit on the mechanical properties of the curauá fiber-reinforced PLA composite printed parts. The composites produced with PLA filaments reinforced by 3 mm 2% curauá fiber presented the overall best mechanical and thermal properties of all studied groups. The curauá fiber-reinforced PLA composites made via fused deposition modeling may be a promising innovation to improve the performance of these materials, which might enable them to serve for new applications.

2.
Polymers (Basel) ; 13(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960977

RESUMO

The thermal stability of natural fiber composites is a relevant aspect to be considered since the processing temperature plays a critical role in the manufacturing process of composites. At higher temperatures, the natural fiber components (cellulose, hemicellulose, and lignin) start to degrade and their major properties (mechanical and thermal) change. Different methods are used in the literature to determine the thermal properties of natural fiber composites as well as to help to understand and determine their suitability for a certain applications (e.g., Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and differential mechanical thermal analysis (DMA)). Weight loss percentage, the degradation temperature, glass transition temperature (Tg), and viscoelastic properties (storage modulus, loss modulus, and the damping factor) are the most common thermal properties determined by these methods. This paper provides an overview of the recent advances made regarding the thermal properties of natural and hybrid fiber composites in thermoset and thermoplastic polymeric matrices. First, the main factors that affect the thermal properties of natural and hybrid fiber composites (fiber and matrix type, the presence of fillers, fiber content and orientation, the treatment of the fibers, and manufacturing process) are briefly presented. Further, the methods used to determine the thermal properties of natural and hybrid composites are discussed. It is concluded that thermal analysis can provide useful information for the development of new materials and the optimization of the selection process of these materials for new applications. It is crucial to ensure that the natural fibers used in the composites can withstand the heat required during the fabrication process and retain their characteristics in service.

3.
Polymers (Basel) ; 12(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283753

RESUMO

The main objective of this work was to investigate the effect of hybridization on the mechanical and thermal properties of intralaminar natural fiber-reinforced hybrid composites based on sisal. Ramie, sisal and curauá fibers were selected as natural fiber reinforcements for the epoxy matrix based composites, which were produced by the hand lay-up technique. Tensile, flexural and impact tests were carried out according to American society for testing and materials (ASTM) standards to characterize the hybrid composites, while differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to evaluate the thermal properties. It was found that the mechanical properties are improved by hybridization of sisal based composites. The thermal analysis showed that the hybridization did not significantly affect the thermal stability of the composites. A scanning electron microscopy (SEM) was used to examine the fracture surface of the tested specimens. The SEM images showed a brittle fracture of the matrix and fiber breakage near the matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA