Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(2): 1191-1203, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38295366

RESUMO

A facile and environmentally mindful approach for the synthesis of MoSe2 QDs was developed via the hydrothermal method from bulk MoSe2. In this, the exfoliation of MoSe2 was enhanced with the aid of an intercalation agent (KOH), which could reduce the exfoliation time and increase the exfoliation efficiency to form MoSe2 QDs. We found that MoSe2 QDs display blue emission that is suitable for different applications. This fluorescence property of MoSe2 QDs was harnessed to fabricate a dual-modal sensor for the detection of both vitamin B12 (VB12) and vitamin B9 (VB9), employing fluorescence quenching. We performed a detailed study on the fluorescence quenching mechanism of both analytes. The predominant quenching mechanism for VB12 is via Förster resonance energy transfer. In contrast, the recognition of VB9 primarily relies on the inner filter effect. We applied an emerging and captivating approach to pattern recognition, the deep-learning method, which enables machines to "learn" patterns through training, eliminating the need for explicit programming of recognition methods. This attribute endows deep-learning with immense potential in the realm of sensing data analysis. Here, analyzing the array-based sensing data, the deep-learning technique, "convolution neural networks", has achieved 93% accuracy in determining the contribution of VB12 and VB9.


Assuntos
Aprendizado Profundo , Pontos Quânticos , Vitamina B 12/análise , Corantes Fluorescentes , Vitaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...