Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(41): 12423-12434, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33035065

RESUMO

The structure and dynamics of interfacial water in biological systems regulate the biochemical reactions. But, it is still enigmatic how the behavior of the interfacial water molecule is controlled. Here, we have investigated the effect of membrane fluidity on the structure and dynamics of interfacial water molecules in biologically relevant phopholipid vesicles. This study delineates that modulation of membrane fluidity through interlipid separation and unsaturation not only mitigate membrane rigidity but also disrupt the strong hydrogen bond (H-bond) network around the lipid bilayer interface. As a result, a disorder in H-bonding between water molecules arises several layers beyond the first hydration shell of the polar headgroup, which essentially modifies the interfacial water structure and dynamics. Furthermore, we have also provided evidence of increasing transportation through these modulated membranes, which enhance the membrane mediated isomerization reaction rate.

2.
J Phys Chem Lett ; 11(20): 8585-8591, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32931285

RESUMO

Amyloid polymorphism has emerged as an important topic of research in recent years to identify the particular species responsible for several neurodegenerative disorders, whereas the concept is overlooked in the case of the simplest building block, that is, l-phenylalanine (l-Phe) self-assembly. Here, we report the first evidence of l-Phe polymorphism and the conversion of metastable helical fibrillar to thermodynamically stable rodlike crystalline morphologies with increasing time and temperature. Furthermore, only the fibrillar l-Phe polymorph shows a significant modulation of the model membrane. In addition, the l-Phe molecules prefer to arrange in a multilayered rodlike fashion than in a lateral arrangement, which reduces the membrane binding ability of the l-Phe polymorph due to the decrease in the partial charge of the N-terminal of l-Phe units. The present work exemplifies a different approach to understanding l-Phe self-assembly and provides an effective strategy for the therapy of phenylketonuria by scrutinizing the discrete membrane activity of different l-Phe polymorphs.


Assuntos
Amiloide/química , Fenilalanina/química , Fenilcetonúrias/metabolismo , Fatores Etários , Cristalização , Humanos , Ligação de Hidrogênio , Imagem Óptica , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Temperatura , Termodinâmica
3.
Langmuir ; 36(9): 2459-2473, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32073868

RESUMO

One of the congenital flaws of metabolism, phenylketonuria (PKU), is known to be related to the self-assembly of toxic fibrillar aggregates of phenylalanine (Phe) in blood at elevated concentrations. Our experimental findings using l-phenylalanine (l-Phe) at millimolar concentration suggest the formation of fibrillar morphologies in the dry phase, which in the solution phase interact strongly with the model membrane composed of 1,2-diacyl-sn-glycero-phosphocholine (LAPC) lipid, thereby decreasing the rigidity (or increasing the fluidity) of the membrane. The hydrophobic interaction, in addition to the electrostatic attraction of Phe with the model membrane, is found to be responsible for such phenomena. On the contrary, various microscopic observations reveal that such fibrillar morphologies of l-Phe are severely ruptured in the presence of its enantiomer d-phenylalanine (d-Phe), thereby converting the fibrillar morphologies into crushed flakes. Various biophysical studies, including the solvation dynamics experiment, suggest that this l-Phe in the presence of d-Phe, when interacting with the same model membrane, now reverts the rigidity of the membrane, i.e., increases the rigidity of the membrane, which was lost due to interaction with l-Phe exclusively. Fluorescence anisotropy measurements also support this reverse rigid character of the membrane in the presence of an enantiomeric mixture of amino acids. A comprehensive understanding of the interaction of Phe with the model membrane is further pursued at the single-molecular fluorescence detection level using fluorescence correlation spectroscopy (FCS) experiments. Therefore, our experimental conclusion interprets a linear correlation between increased permeability and enhanced fluidity of the membrane in the presence of l-Phe and certifies d-Phe as a therapeutic modulator of l-Phe fibrillar morphologies. Further, the study proposes that the rigidity of the membrane lost due to interaction with l-Phe was reinstated-in fact, increased-in the presence of the enantiomeric mixture containing both d- and l-Phe.


Assuntos
Amiloide/química , Lipossomos/química , Fenilalanina/química , Fluidez de Membrana/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Fosfatidilcolinas/química , Estereoisomerismo
4.
J Phys Chem B ; 124(11): 2065-2080, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32081003

RESUMO

"Mother nature" utilizes molecular self-assembly as an efficient tool to design several fascinating supramolecular architectures from simple building blocks like amino acids, peptides, and nucleobases. The self-assembling behavior of various biologically important molecules, morphological outcomes, molecular mechanism of association, and finally their applications in the real world draw broad interest from chemical and biological point of views. In this present Feature Article, the amyloid hypothesis is extended to include nonproteinaceous single metabolites that invoke a new paradigm for the pathology of inborn metabolic disorders. In this scenario, we dedicate this paper to understanding the morphological consequences and mechanistic insight of the self-assembly of some important amino acids (e.g., l-phenylalanine, l-tyrosine, glycine, etc.) and nucleobases (adenine and eight uracil moiety derivatives). Using proper spectroscopic and microscopic tools, distinct assembling mechanisms of different amino acids and nucleobases have been established. Again, lanthanides, polyphenolic compounds such as crown ethers, and a worldwide drink, beer, are elegantly employed as inhibitors of the resulting fibrillar aggregated structures. As a consequence, this study will cover literally a vast region in the self-assembling outcomes of single biologically important molecules, and therefore, we expect that a detailed understanding of such morphological outcomes using spectroscopic and microscopic approaches may open a new paradigm in this burgeoning field.


Assuntos
Aminoácidos , Peptídeos , Amiloide , Nanotecnologia , Análise Espectral
5.
Langmuir ; 36(10): 2707-2719, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32097563

RESUMO

Controllable self-assembly and understanding of the interaction between single metabolite fibrils and live-cell membranes have paramount importance in providing minimal treatment in several neurodegenerative disorders. Here, utilizing the nonlinear nature and peculiar hydrogen bonding behavior of the dimethyl sulfoxide (DMSO)-water mixture, the selective self-assembly of a single metabolite 5-fluorouracil (5-FU) is achieved. A direct correlation between water availability and selective self-assembly of 5-FU is ratified from the excited-state dynamics. The specific fibrillar structures of 5-FU exhibit a great potential to modulate live cell membrane fluidity and model membrane lipid distribution. After 5-FU fibril addition, a disorder of H-bonded water molecules arises several layers beyond the first hydration shell of the polar headgroups, which essentially modifies interfacial water structure and dynamics. Overall, our results shed light on the role of solvent to govern specific self-assembly and also lay the foundation accounting for the earlier stage of several diseases and multidrug resistance.


Assuntos
Dimetil Sulfóxido , Fluoruracila , Ligação de Hidrogênio , Solventes , Água
6.
Anal Chem ; 91(7): 4337-4345, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30821145

RESUMO

We have elucidated the role of unsaturated fatty acid in the in vitro model phospholipid membrane and in vivo live cell membrane. Fluorescence microscopy and time-resolved fluorescence spectroscopy have been employed to uncover how modulation of vesicle bilayer fluidity persuades structural transformation. This unsaturation induced structural transformation due to packing disorder in bilayer has been delineated through spatially resolved fluorescence lifetime imaging microscopy (FLIM) and fluorescence polarization or anisotropy imaging microscopy (FPIM/FAIM). Structure-function relationship of phospholipid vesicle is also investigated by monitoring intervesicular water dynamics behavior, which has been demonstrated by temporally resolved fluorescence spectroscopy (TRFS) techniques. Nevertheless, it has also been manifested from this study that loss of rigidity in bilayer breaks down the strong hydrogen bond (H-bond) network around the charged lipid head groups. The disruption of this H-bond network increases the bilayer elasticity, which helps to evolve various kinds of vesicular structure. Furthermore, the significant influence of unsaturated fatty acid on membrane bilayer has been ratified through in vivo live cell imaging.


Assuntos
Membrana Celular/metabolismo , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Linhagem Celular , Membrana Celular/química , Ácidos Graxos Insaturados/química , Corantes Fluorescentes/química , Humanos , Ligação de Hidrogênio , Bicamadas Lipídicas/química , Lipossomos/química , Microscopia de Fluorescência/métodos , Rodaminas/química , Água/química
7.
Soft Matter ; 14(41): 8325-8332, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30289141

RESUMO

Morphology switching by an external stimulus creates the possibility to detect and control the activity and functionality of bio-molecules. Unconjugated bilirubin (UCB), a waste product resulting from heme catabolism, is highly sensitive towards blue light induced configurational conversion from (4Z,15Z) to (4Z,15E)-bilirubin. UCB has a distinct elongated nanostructure which is readily photoswitchable to spherical by external blue light (470 nm) irradiation. Herein, the morphology alteration by blue light was nicely correlated with the photoisomerisation of UCB, using different microscopic and spectroscopic techniques. To restrict the other photo-incidents during phototreatment on UCB, a suitable time frame was calibrated by monitoring the absorption, HPLC, lifetime distribution and 1H NMR studies. Furthermore, by the help of this morphological transition as a marker, UCB early stage photoisomerisation has also been triggered by two-photon irradiation (940 nm).


Assuntos
Bilirrubina/química , Luz , Processos Fotoquímicos , Isomerismo , Modelos Moleculares , Conformação Molecular
8.
Chem Commun (Camb) ; 54(81): 11451-11454, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30252002

RESUMO

Model lipid vesicles self-reproduce to generate unilamellar daughter vesicles in the presence of a cell-penetrating peptide. Fluorescence lifetime and anisotropy image analysis exquisitely capture the change in the lipid bilayer rigidity throughout the process, whereas a solvation dynamic study delineates the change in the dynamics of the encapsulated water inside the vesicles. Overall, our results provide an experimental underpinning of the role of the lipid bilayer structural changes in self-reproduction, which can exhibit great potential for interpreting the protein-membrane interaction in the emergence of life and for developing new therapeutic strategies.


Assuntos
Peptídeos Penetradores de Células/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Lipossomas Unilamelares/química , Fluorescência , Corantes Fluorescentes/química , Microscopia de Fluorescência , Piranos/química , Espectrometria de Fluorescência , Estirenos/química , Água/química
9.
J Colloid Interface Sci ; 522: 63-73, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29574270

RESUMO

Studying the self-assembly of uracil derivatives has great importance in biochemistry and nanotechnology. Now, in order to architect unique and interesting nucleobase nanostructures, herein, we report a simple, yet robust uracil moiety based platform which is potentially capable to self-assemble into fibrils. The system is validated using eight uracil moiety derivatives and the effect is examined via fluorescence lifetime imaging microscopy (FLIM), field emission scanning electron microscopy (FESEM), steady state DCM fluorescence and fluorescence correlation spectroscopy (FCS). FLIM and FESEM give qualitative information regarding the fibril formation of different morphologies including string, rod, flower, needles etc. Steady state DCM fluorescence and FCS establish a quantitative estimation of the extent of fibril formation. The involvement of hydrogen bonding interaction between NH and CO groups in the fibrillar growth of 5-IU is evoked from the crystallographic study. Again, the key role of different functional groups behind the formation of fibrillar network is investigated through blocking the COO- group of orotic acid with lanthanides. Finally, esterification and N,N'-dimethylation exquisitely explore the role and priority of different groups in the fibril formation of pyrimidine analogues. The results may be useful for understanding the processes of self-assembly of the uracil derivatives and the rationalized design of the uracil based supramolecular structures with specific properties.

10.
Langmuir ; 34(10): 3296-3306, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29474788

RESUMO

In this article, we have unveiled the aggregation behavior of a potent chemotherapeutic drug, doxorubicin hydrochloride (Dox) in a well-known imidazolium based surface active ionic liquid (SAIL), 1-octyl-3-methylimidazolium chloride (C8mimCl). The aggregates formed by Dox in C8mimCl have been characterized using dynamic light scattering (DLS), fluorescence lifetime imaging microscopy (FLIM), high-resolution transmission electron microscopy (HR-TEM), analytical transmission electron microscopy (analytical TEM), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR) measurements. It is found that Dox forms large spherical aggregates in the presence of C8mimCl SAIL. We have also explored the driving force behind this aggregation behavior of Dox in C8mimCl. Furthermore, it is observed that in the presence of a common bile salt, sodium cholate (NaCh), Dox/C8mimCl spherical aggregates disrupt to form rodlike fibrillar aggregates. Therefore, formation of spherical aggregates and also its disruption into rodlike fibrillar aggregates have been performed, and this is expected to open a new scope for the design of a new generation smart drug delivery system where the drug itself aggregates to form the delivery system.

12.
Langmuir ; 33(41): 10978-10988, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28930474

RESUMO

Under physiological conditions, 5-fluorouracil (5-FU), an anticancer drug, self-assembles into fibrils by strong hydrogen-bonding network, whereas its N,N'-dimethyl derivative, 5-fluoro-1,3-dimethyluracil (5-FDMU), does not make fibrils due to lack of strong hydrogen-bonding motif. In vitro, 5-FU self-assembly is sensitive to physicochemical conditions like the pH and ionic strength of the solution, which tune the strength of the noncovalent driving forces. Here we report a surprising finding that the buffer, which is necessary to control the pH and is typically considered to be inert, also significantly influences 5-FU self-assembly, which indicates an important role of counterions in the fibril formation. We have also monitored concentration- and time-dependent fibrillar growth of 5-FU. Again, fibril growth process is probed under dynamic conditions using microfluidic platform. The self-assembly of 5-FU compared with its N,N'-dimethyl derivative shows lower cytotoxicity to the cultured human erythroleukemic cells (K562 cells), which plausibly states the reason behind the greater effectiveness of 5-FU derivative drugs than 5-FU itself.


Assuntos
Fluoruracila/química , Antineoplásicos , Humanos , Ligação de Hidrogênio
13.
Langmuir ; 33(38): 9811-9821, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28849933

RESUMO

In this article, anionic lipophilic dye merocyanine 540(MC540) and cationic surface-active ionic liquid (SAIL) 1-octyl-3-methylimidazolium chloride (C8mimCl) are employed to construct highly ordered fibrillar and vesicular aggregates exploiting an ionic self-assembly (ISA) strategy. It is noteworthy that the concentration of the counterions has exquisite control over the morphology, in which lowering the concentration of both the building blocks in a stoichiometric ratio of 1:1 provides a vesicle to fibril transition. Here, we have reported the concentration-controlled fibril-vesicle transition utilizing the emerging fluorescence lifetime imaging microscopy (FLIM) technique. Furthermore, we have detected this morphological transformation by means of other microscopic techniques such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and cryogenic-transmission electron microscopy (cryo-TEM) to gain additional support. Besides, multiwavelength FLIM (MW-FLIM) and atomic force microscopy (AFM) techniques assist us in knowing the microheterogeneity and the height profile of the vesicles, respectively. We have replaced the SAIL, C8mimCl, by an analogous traditional surfactant, n-octyltrimethylammonium bromide (OTAB), and it provides a discernible change in morphology similar to that of C8mimCl, whereas 1-octanol is unable to exhibit any structural aggregation and thus reveals the importance of electrostatic interaction in supramolecular aggregate formation. However, the SAILs having the same imidazolium headgroup with different chain lengths other than C8mimCl are unable to display any structural transition and determine the importance of the correct chain length for efficient packing of the counterions to form a specific self-assembly. Therefore, this study reveals the synergistic interplay of electrostatic, hydrophobic, and π-π stacking interactions to construct the self-assembly and their concentration-dependent morphological transition.

14.
J Phys Chem B ; 121(7): 1533-1543, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28121442

RESUMO

Phenylketonuria and tyrosinemia type II, the two metabolic disorders, are originated due to the complications in metabolism of phenylalanine (Phe) and tyrosine (Tyr), respectively. Several neurological injuries, involving microcephaly, mental retardation, epilepsy, motor disease, and skin problems etc., are the symptoms of these two diseases. It has been reported that toxic amyloid fibrils are formed at high concentrations of Phe and Tyr. Our study indicates that the fibril forming mechanisms of Phe and Tyr are completely different. In the case of Phe, -NH3+ and -COO- groups of neighboring molecules interact via hydrogen bonding and polar interactions. On the other hand, there is no role of - NH3+ group in the fibril forming mechanism of Tyr. In Tyr fibril, the two hydrogen bonding partners are -OH and -COO- groups. In addition, we have also investigated the effect of three lanthanide cations on the fibrillar assemblies of Phe. It has been observed that the efficiencies of three lanthanides to inhibit the fibrillar assemblies of Phe follow the order Tb3+< Sm3+< Eu3+.


Assuntos
Substâncias Macromoleculares/química , Fenilalanina/química , Tirosina/química , Éteres de Coroa/química , Európio/química , Ligação de Hidrogênio , Cinética , Fenilcetonúrias/fisiopatologia , Samário/química , Térbio/química , Tirosinemias/fisiopatologia
15.
J Colloid Interface Sci ; 490: 762-773, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-27997846

RESUMO

The presence of different surfactants can alter the physicochemical behaviors of aqueous organized assemblies. In this article, we have investigated the location of hydrophobic molecule (Coumarin 153, C153) and hydrophilic molecule (Rhodamine 6G perchlorate, R6G) during micelle-vesicle-micelle transition in aqueous medium in presence of anionic surfactant, sodium dodecylbenzenesulfonate (SDBS) and cationic imidazolium-based surfactant, 1-alkyl-3-methylimidazolium chloride (CnmimCl; n=12, 16). Initially, the physicochemical properties of anionic micellar solution of SDBS has been investigated in presence of imidazolium-based surfactant, CnmimCl (n=12, 16) in aqueous medium by visual observation, turbidity measurement, zeta potential (ζ), dynamics light scattering (DLS), and transmission electron microscopy (TEM). Zeta potential (ζ) measurement clearly indicates that the incorporation efficiency of C16mimCl in SDBS micelle is better than the other one due to the involvement of strong hydrophobic as well as electrostatic interaction between the two associated molecules. Turbidity and DLS measurements clearly suggest the formation of vesicles over a wide range of concentration. Finally, the rotational motion of C153 and R6G has also been monitored at different mole fractions of CnmimCl in SDBS-CnmimCl (n=12, 16) solution mixtures. The hydrophobic C153 molecules preferentially located in the bilayer region of vesicle, whereas hydrophilic R6G can be solubilized at surface of the bilayer, inner water pool or outer surface of vesicles. It is observed that rotational motion of R6G is altered significantly in SDBS-CnmimCl solution mixtures in presence of different mole fractions of CnmimCl. Additionally, the translational diffusion motion of R6G is monitored using fluorescence correlation spectroscopy (FCS) techniques to get a complete scenario about the location and translational diffusion of R6G.


Assuntos
Benzenossulfonatos/química , Cumarínicos/química , Corantes Fluorescentes/química , Imidazóis/química , Micelas , Rodaminas/química , Tensoativos/química , Difusão , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Soluções , Espectrometria de Fluorescência , Água/química
16.
J Phys Chem B ; 121(1): 24-34, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27959558

RESUMO

The development of stable vesicular assemblies and the understanding of their interaction and dynamics in aqueous solution are long-standing topics in the research of chemistry and biology. Fatty acids are known to form vesicle structure in aqueous solution depending on the pH of the medium. Protic ionic liquid of fatty acid with ethyl amine (oleate ethyl amine, OEA) as a component spontaneously forms a vesicle in aqueous solution. The general comparison of dynamics and interaction of these two vesicles have been drawn using fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging microscopy (FLIM) measurements. Further, FLIM images of a single vesicle are taken at multiple wavelengths, and the solvation of the probe molecules has been observed from the multiwavelength FLIM images. The lifetime of the probe molecule in OEA vesicle is higher than that in simple fatty acid vesicles. Therefore, it suggests that the membrane of the OEA vesicle is more dehydrated compared to that of fatty acid vesicles, and it facilitates OEA vesicles to fuse themselves in the presence of electrolyte, sodium chloride (NaCl). However, under the same conditions, only fatty acid vesicles do not fuse. The fusion of OEA vesicles is successfully demonstrated by the time scan FLIM measurements. The different events in the fusion process are analyzed in the light of the reported model of vesicle fusion. Finally, the local viscosity of the water pool of the vesicle is determined using kiton red, as a molecular rotor. With addition of NaCl, the fluidity in the interior of the vesicle is increased which leads to disassembly of vesicle. The rich dynamic properties of this vesicular assembly and the FLIM based approach of vesicle fusion will provide better insight into the growth of a protocell membrane.


Assuntos
Ácidos Graxos/química , Fluorescência , Líquidos Iônicos/química , Imagem Óptica , Cloreto de Sódio/química , Microscopia de Fluorescência , Estrutura Molecular
17.
Langmuir ; 32(49): 13284-13295, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951700

RESUMO

Fatty acids are known to form different supramolecular aggregates in aqueous solutions depending on the pH of the medium. The dynamics of the transformation of oleate micelles into oleic acid/oleate vesicles has been investigated using a pH-sensitive intramolecular proton transfer fluorophore, 2,2'-bipyridine-3,3'-diol [BP(OH)2]. Different prototropic forms of BP(OH)2 exist in different pH values of the system, and thus, the ground state and the excited state dynamics of BP(OH)2 have been modulated in these confined media. The formation of different tautomeric forms of BP(OH)2 in oleate micelles (at basic pH) is confirmed using time-resolved emission spectra and fluorescence anisotropy measurements. The hydrophobic environment provided by these assemblies reduces the water-assisted nonradiative decay channels and lengthens the fluorescence lifetime of BP(OH)2. The rotational relaxation time in the micellar assembly is higher than that in the vesicle, which may be due to the higher microviscosity sensed by the fluorophore in the micelle. Besides, we have shown for the first time that BP(OH)2 can be used as a membrane-bound fluorophore, using fluorescence lifetime imaging microscopy (FLIM). A broad distribution in the size of the vesicle is observed from the FLIM image. Further, we have used multiwavelength FLIM to collect the FLIM images of a single vesicle at different emission wavelengths, and the lifetime distribution obtained from the FLIM images at different emission wavelengths in a single vesicle correlates well with the lifetime values obtained from the ensemble average measurements in the bulk solution.

18.
Langmuir ; 32(42): 10946-10956, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27690468

RESUMO

This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (C12mimCl), and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([C4mim][C8SO4]). Dynamic light scattering (DLS) measurements and 1H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide (AMP) and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in the presence of DNA nucleotides. Additionally, the rotational motion of two oppositely charged molecules, rhodamine 6G perchlorate (R6G) and fluorescein sodium salt (Fl-Na), have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favorable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that the interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.

19.
J Phys Chem B ; 120(31): 7662-70, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27403653

RESUMO

In this article, our aim is to investigate the interaction of l-phenylalanine (l-Phe) fibrils with crown ethers (CEs). For this purpose, two different CEs (15-Crown-5 (15C5) and 18-Crown-6 (18C6)) were used. Interestingly, we have observed that both CEs have the ability to arrest fibril formation. However, 18C6 was found to be a better candidate compared to 15C5. Field emission scanning electron microscopy and fluorescence lifetime imaging microscopy were used to monitor the fibril-arresting kinetics of CEs. The arresting process was further confirmed by fluorescence correlation spectroscopy and nuclear magnetic resonance studies.


Assuntos
Éteres de Coroa/química , Fenilalanina/antagonistas & inibidores , Fenilalanina/química , Amiloide/química , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Dicroísmo Circular , Éteres de Coroa/farmacologia , Cinética , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Fenilalanina/metabolismo , Fenilcetonúrias/tratamento farmacológico , Fenilcetonúrias/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Piranos/química , Estirenos/química
20.
Langmuir ; 32(28): 7127-37, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27345738

RESUMO

This article describes the formation of stable unilamellar vesicles involving surface active ionic liquid (SAIL), 1-hexadecyl-3-methylimidazolium chloride (C16mimCl), and 5-methyl salicylic acid (5mS). Turbidity, dynamic light scattering (DLS), transmission electron microscopy (TEM), and viscosity measurements suggest that C16mimCl containing micellar aggregates are transformed to elongated micelle and finally into vesicular aggregates with the addition of 5mS. Besides, we have also investigated the photophysical aspects of a hydrophobic (coumarin 153, C153) and a hydrophilic molecule (rhodamine 6G (R6G) perchlorate) during 5mS-induced micelle to vesicle transition. The rotational motion of C153 becomes slower, whereas faster motion is observed for R6G during micelle to vesicle transition. Moreover, the fluorescence correlation spectroscopy (FCS) measurements suggest that the translational diffusion of hydrophobic probe becomes slower in C16mimCl-5mS aggregates in comparison to C16mimCl micelle. However, a reverse trend in translational diffusion motion of hydrophilic molecule has been observed in C16mimCl-5mS aggregates. Moreover, we have also found that the C16mimCl-5mS containing vesicles are transformed into micelles upon enhanced temperature, and it is further confirmed by turbidity, DLS measurements that this transition is a reversible one. Finally, temperature-induced rotational motion of C153 and R6G has been monitored in C16mimCl-5mS aggregates to get a complete scenario regarding the temperature-induced vesicle to micelle transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...