Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 4): 877-887, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771778

RESUMO

Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism. A vector tomography algorithm has been developed to reconstruct the full 3D magnetic vector field without any prior noise assumptions or knowledge about the sample. Two tomographic scans around the vertical axis are acquired on single-crystalline Nd2Fe14B pillars tilted at two different angles, with 2D STXM projections recorded using a focused 120 nm X-ray beam with left and right circular polarization. Image alignment and iterative registration have been implemented based on the 2D STXM projections for the two tilts. Dichroic projections obtained from difference images are used for the tomographic reconstruction to obtain the 3D magnetization distribution at the nanoscale.

2.
Sci Rep ; 14(1): 7803, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565586

RESUMO

Room temperature semiconductor radiation detectors (RTSD) for X-ray and γ -ray detection are vital tools for medical imaging, astrophysics and other applications. CdZnTe (CZT) has been the main RTSD for more than three decades with desired detection properties. In a typical pixelated configuration, CZT have electrodes on opposite ends. For advanced event reconstruction algorithms at sub-pixel level, detailed characterization of the RTSD is required in three dimensional (3D) space. However, 3D characterization of the material defects and charge transport properties in the sub-pixel regime is a labor intensive process with skilled manpower and novel experimental setups. Presently, state-of-art characterization is done over the bulk of the RTSD considering homogenous properties. In this paper, we propose a novel physics based machine learning (PBML) model to characterize the RTSD over a discretized sub-pixelated 3D volume which is assumed. Our novel approach is the first to characterize a full 3D charge transport model of the RTSD. In this work, we first discretize the RTSD between a pixelated electrodes spatially into 3 dimensions-x, y, and z. The resulting discretizations are termed as voxels in 3D space. In each voxel, the different physics based charge transport properties such as drift, trapping, detrapping and recombination of charges are modeled as trainable model weights. The drift of the charges considers second order non-linear motion which is observed in practice with the RTSDs. Based on the electron-hole pair injections as input to the PBML model, and signals at the electrodes, free and trapped charges (electrons and holes) as outputs of the model, the PBML model determines the trainable weights by backpropagating the loss function. The trained weights of the model represents one-to-one relation to that of the actual physical charge transport properties in a voxelized detector.

3.
Front Neurosci ; 17: 1127537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152590

RESUMO

Tactile sensing is essential for a variety of daily tasks. Inspired by the event-driven nature and sparse spiking communication of the biological systems, recent advances in event-driven tactile sensors and Spiking Neural Networks (SNNs) spur the research in related fields. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representation abilities of existing spiking neurons and high spatio-temporal complexity in the event-driven tactile data. In this paper, to improve the representation capability of existing spiking neurons, we propose a novel neuron model called "location spiking neuron," which enables us to extract features of event-based data in a novel way. Specifically, based on the classical Time Spike Response Model (TSRM), we develop the Location Spike Response Model (LSRM). In addition, based on the most commonly-used Time Leaky Integrate-and-Fire (TLIF) model, we develop the Location Leaky Integrate-and-Fire (LLIF) model. Moreover, to demonstrate the representation effectiveness of our proposed neurons and capture the complex spatio-temporal dependencies in the event-driven tactile data, we exploit the location spiking neurons to propose two hybrid models for event-driven tactile learning. Specifically, the first hybrid model combines a fully-connected SNN with TSRM neurons and a fully-connected SNN with LSRM neurons. And the second hybrid model fuses the spatial spiking graph neural network with TLIF neurons and the temporal spiking graph neural network with LLIF neurons. Extensive experiments demonstrate the significant improvements of our models over the state-of-the-art methods on event-driven tactile learning, including event-driven tactile object recognition and event-driven slip detection. Moreover, compared to the counterpart artificial neural networks (ANNs), our SNN models are 10× to 100× energy-efficient, which shows the superior energy efficiency of our models and may bring new opportunities to the spike-based learning community and neuromorphic engineering. Finally, we thoroughly examine the advantages and limitations of various spiking neurons and discuss the broad applicability and potential impact of this work on other spike-based learning applications.

4.
Sci Rep ; 13(1): 168, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599876

RESUMO

Room-temperature semiconductor radiation detectors (RTSD) have broad applications in medical imaging, homeland security, astrophysics and others. RTSDs such as CdZnTe, CdTe are often pixelated, and characterization of these detectors at micron level can benefit 3-D event reconstruction at sub-pixel level. Material defects alongwith electron and hole charge transport properties need to be characterized which requires several experimental setups and is labor intensive. The current state-of-art approaches characterize each detector pixel, considering the detector in bulk. In this article, we propose a new microscopic learning-based physical models of RTSD based on limited data compared to what is dictated by the physical equations. Our learning models uses a physical charge transport considering trapping centers. Our models learn these material properties in an indirect manner from the measurable signals at the electrodes and/or free and/or trapped charges distributed in the RTSD for electron-hole charge pair injections in the material. Based on the amount of data used during training our physical model, our algorithm characterizes the detector for charge drifts, trapping, detrapping and recombination coefficients considering multiple trapping centers or as a single equivalent trapping center. The RTSD is segmented into voxels spatially, and in each voxel, the material properties are modeled as learnable parameters. Depending on the amount of data, our models can characterize the RTSD either completely or in an equivalent manner.

5.
Sensors (Basel) ; 24(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202954

RESUMO

Room-temperature semiconductor radiation detectors (RTSD) such as CdZnTe are popular in Computed Tomography (CT) imaging and other applications. Transport properties and material defects with respect to electron and hole transport often need to be characterized, which is a labor intensive process. However, these defects often vary from one RTSD to another and are not known a priori during characterization of the material. In recent years, physics-inspired machine learning (PI-ML) models have been developed for the RTSDs which have the ability to characterize the defects in a RTSD by discretizing it volumetrically. These learning models capture the heterogeneity of the defects in the RTSD-which arises due to the fabrication process and the energy bands of elements in the RTSD. In those models, the different defects of RTSD-trapping, detrapping and recombination for electrons and holes-are present. However, these defects are often unknown. In this work, we show the capabilities of a PI-ML model which has been developed considering all the material defects to identify certain defects which are present (or absent). Additionally, these models can identify the defects over the volume of the RTSD in a discretized manner.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36315535

RESUMO

We present a novel adaptive multimodal intensity-event algorithm to optimize an overall objective of object tracking under bit rate constraints for a host-chip architecture. The chip is a computationally resource-constrained device acquiring high-resolution intensity frames and events, while the host is capable of performing computationally expensive tasks. We develop a joint intensity-neuromorphic event rate-distortion compression framework with a quadtree (QT)-based compression of intensity and events scheme. The goal of this compression framework is to optimally allocate bits to the intensity frames and neuromorphic events based on the minimum distortion at a given communication channel capacity. The data acquisition on the chip is driven by the presence of objects of interest in the scene as detected by an object detector. The most informative intensity and event data are communicated to the host under rate constraints so that the best possible tracking performance is obtained. The detection and tracking of objects in the scene are done on the distorted data at the host. Intensity and events are jointly used in a fusion framework to enhance the quality of the distorted images, in order to improve the object detection and tracking performance. The performance assessment of the overall system is done in terms of the multiple object tracking accuracy (MOTA) score. Compared with using intensity modality only, there is an improvement in MOTA using both these modalities in different scenarios.

7.
Appl Opt ; 52(26): 6549-56, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24085132

RESUMO

The internal birefringence η of an optical medium develops the dynamical phase through natural rotation of incident polarized light. The uniform twist of the medium induces an external birefringence in the system represented by k, the angular twist per unit thickness of the medium. This can be visualized through the geometric phase (GP) in association with internal birefringence. The representation of polarized photon, polarization matrix, and birefringent matrix are expressed in the l=1 orbital angular momentum (OAM) sphere where the corresponding GP is OAM dependent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...