Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(4): L043201, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37198835

RESUMO

A 70-year-old problem of fluid and plasma relaxation has been revisited. A principal based on vanishing nonlinear transfer is proposed to develop a unified theory of the turbulent relaxation of neutral fluids and plasmas. Unlike previous studies, the proposed principle enables us to find the relaxed states unambiguously without going through any variational principle. The general relaxed states obtained herein are found to support naturally a pressure gradient which is consistent with several numerical studies. Relaxed states are reduced to Beltrami-type aligned states where the pressure gradient is negligibly small. According to the present theory, the relaxed states are attained in order to maximize a fluid entropy S calculated from the principles of statistical mechanics [Carnevale et al., J. Phys. A: Math. Gen. 14, 1701 (1981)10.1088/0305-4470/14/7/026]. This method can be extended to find the relaxed states for more complex flows.

2.
Phys Rev E ; 106(2-2): 025104, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109938

RESUMO

Inertial range energy transfer in three-dimensional fully developed binary fluid turbulence is studied under the assumption of statistical homogeneity. Using two-point statistics, exact relations corresponding to the energy cascade are derived in terms of (i) two-point increments and (ii) two-point correlators. Despite having some apparent resemblances, the exact relation in binary fluid turbulence is found to be different from that of the incompressible magnetohydrodynamic turbulence [H. Politano and A. Pouquet, Geophys. Res. Lett. 25, 273 (1998)]0094-827610.1029/97GL03642. Besides the usual direct cascade of energy, under certain situations, an inverse cascade of energy is also speculated depending upon the strength of the activity parameter and the interplay between the two-point increments of the fluid velocity and the composition gradient fields. An alternative form of the exact relation is also derived in terms of the "upsilon" variables and a subsequent phenomenology is proposed predicting a k^{-3/2} law for the turbulent energy spectrum.

3.
Phys Rev E ; 101(4-1): 043212, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422726

RESUMO

We derive the exact relation for the energy transfer in three-dimensional compressible two-fluid plasma turbulence. In the long-time limit, we obtain an exact law which expresses the scale-to-scale average energy flux rate in terms of two point increments of the fluid variables of each species, electric and magnetic field and current density, and puts a strong constraint on the turbulent dynamics. The incompressible single fluid and two-fluid limits and the compressible single fluid limit are recovered under appropriate assumption. In the single fluid limits, analyses are done with and without neglecting the electron mass thereby making the exact relation suitable for a broader range of application. In the compressible two-fluid regime, the total energy flux rate, unlike the single fluid case, is found to be unaltered by the presence of a background magnetic field. The exact relation provides a way to test whether a range of scales in a plasma is inertial or dissipative and is essential to understand the nonlinear nature of both space and dilute astrophysical plasmas.

4.
Phys Rev E ; 100(5-1): 053105, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31870034

RESUMO

Under the influence of an external magnetic field H, the suspended ferromagnetic particles of a laminar ferrofluid flow try to be oriented along H through a relaxation mechanism. Turbulence affects the interaction between the magnetization of each suspended particle and the external field thereby leading to a large relaxation time and hence a slow relaxation process. This can be obtained by replacing viscous drag force with turbulent drag force in Brownian motion. We show that the total energy is an inviscid invariant in turbulent ferrofluids. Using two-point statistics we formulate an exact relation in the inertial zone of incompressible ferrofluid turbulence. This exact relation gives an accurate measure of the energy dissipation rate in a turbulent ferrofluid. We also show that (u×ω), (M×H), (M·∇)H, and (ω×M) play the major role in energy cascading in turbulent ferrofluids.

5.
Phys Rev E ; 97(2-1): 023107, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548083

RESUMO

Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016)2470-004510.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017)1751-811310.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.

6.
Phys Rev E ; 96(5-1): 053116, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29347764

RESUMO

Self-gravitating isothermal supersonic turbulence is analyzed in the asymptotic limit of large Reynolds numbers. Based on the inviscid invariance of total energy, an exact relation is derived for homogeneous (not necessarily isotropic) turbulence. A modified definition for the two-point energy correlation functions is used to comply with the requirement of detailed energy equipartition in the acoustic limit. In contrast to the previous relations (S. Galtier and S. Banerjee, Phys. Rev. Lett. 107, 134501 (2011)PRLTAO0031-900710.1103/PhysRevLett.107.134501; S. Banerjee and S. Galtier, Phys. Rev. E 87, 013019 (2013)PLEEE81539-375510.1103/PhysRevE.87.013019), the current exact relation shows that the pressure dilatation terms play practically no role in the energy cascade. Both the flux and source terms are written in terms of two-point differences. Sources enter the relation in a form of mixed second-order structure functions. Unlike the kinetic and thermodynamic potential energies, the gravitational contribution is absent from the flux term. An estimate shows that, for the isotropic case, the correlation between density and gravitational acceleration may play an important role in modifying the energy transfer in self-gravitating turbulence. The exact relation is also written in an alternative form in terms of two-point correlation functions, which is then used to describe scale-by-scale energy budget in spectral space.

7.
Phys Rev E ; 93(3): 033120, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078460

RESUMO

Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic helicity cascade is linked to the right polarized fluctuations.

8.
Artigo em Inglês | MEDLINE | ID: mdl-23410438

RESUMO

Compressible isothermal magnetohydrodynamic turbulence is analyzed under the assumption of statistical homogeneity and in the asymptotic limit of large kinetic and magnetic Reynolds numbers. Following Kolmogorov we derive an exact relation for some two-point correlation functions which generalizes the expression recently found for hydrodynamics. We show that the magnetic field brings new source and flux terms into the dynamics which may act on the inertial range similarly as a source or a sink for the mean energy transfer rate. The introduction of a uniform magnetic field simplifies significantly the exact relation for which a simple phenomenology may be given. A prediction for axisymmetric energy spectra is eventually proposed.


Assuntos
Algoritmos , Hidrodinâmica , Campos Magnéticos , Modelos Teóricos , Reologia/métodos , Simulação por Computador
9.
Phys Rev Lett ; 107(13): 134501, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-22026857

RESUMO

Compressible isothermal turbulence is analyzed under the assumption of homogeneity and in the asymptotic limit of a high Reynolds number. An exact relation is derived for some two-point correlation functions which reveals a fundamental difference with the incompressible case. The main difference resides in the presence of a new type of term which acts on the inertial range similarly as a source or a sink for the mean energy transfer rate. When isotropy is assumed, compressible turbulence may be described by the relation -2/3ε(eff)r = F(r)(r), where F(r) is the radial component of the two-point correlation functions and ε(eff) is an effective mean total energy injection rate. By dimensional arguments, we predict that a spectrum in k(-5/3) may still be preserved at small scales if the density-weighted fluid velocity ρ(1/3)u is used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...