Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(16): 4069-4071, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34388813

RESUMO

We designed, fabricated, and characterized a flat multi-level diffractive lens comprised of only silicon with diameter=15.2mm, focal length=19mm, numerical aperture of 0.371, and operating over the long-wave infrared (LWIR) spectrum=8µm to 14 µm. We experimentally demonstrated a field of view of 46°, depth of focus >5mm, and wavelength-averaged Strehl ratio of 0.46. All of these metrics were comparable to those of a conventional refractive lens. The active device thickness is only 8 µm, and its weight (including the silicon substrate) is less than 0.2 g.

2.
Opt Express ; 29(13): 20715-20723, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34266154

RESUMO

It is generally assumed that correcting chromatic aberrations in imaging requires multiple optical elements. Here, we show that by allowing the phase in the image plane to be a free parameter, it is possible to correct chromatic variation of focal length over an extremely large bandwidth, from the visible (Vis) to the longwave infrared (LWIR) wavelengths using a single diffractive surface, i.e., a flat lens. Specifically, we designed, fabricated and characterized a flat, multi-level diffractive lens (MDL) with a thickness of ≤ 10µm, diameter of ∼1mm, and focal length of 18mm, which was constant over the operating bandwidth of λ=0.45µm (blue) to 15µm (LWIR). We experimentally characterized the point-spread functions, aberrations and imaging performance of cameras comprised of this MDL and appropriate image sensors for λ=0.45µm to 11µm. We further show using simulations that such extreme achromatic MDLs can be achieved even at high numerical apertures (NA=0.81). By drastically increasing the operating bandwidth and eliminating several refractive lenses, our approach enables thinner, lighter and simpler imaging systems.

3.
Opt Lett ; 45(22): 6158-6161, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186939

RESUMO

Compound eyes found in insects provide intriguing sources of biological inspiration for miniaturized imaging systems. Inspired by such insect eye structures, we demonstrate an ultrathin arrayed camera enabled by a flat multi-level diffractive microlens array for super-resolution visible imaging. We experimentally demonstrate that the microlens array can achieve a large fill factor (hexagonal close packing with pitch=120µm), thickness of 2.6 µm, and diffraction-limited (Strehlratio=0.88) achromatic performance in the visible band (450 to 650 nm). We also demonstrate super-resolution imaging with resolution improvement of ∼1.4 times by computationally merging 1600 images in the array.


Assuntos
Biomimética/instrumentação , Lentes , Microtecnologia/instrumentação , Imagem Óptica/instrumentação , Razão Sinal-Ruído , Animais , Olho , Insetos/anatomia & histologia
4.
Sci Rep ; 10(1): 14608, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883991

RESUMO

Multilevel diffractive lenses (MDLs) have emerged as an alternative to both conventional diffractive optical elements (DOEs) and metalenses for applications ranging from imaging to holographic and immersive displays. Recent work has shown that by harnessing structural parametric optimization of DOEs, one can design MDLs to enable multiple functionalities like achromaticity, depth of focus, wide-angle imaging, etc. with great ease in fabrication. Therefore, it becomes critical to understand how fabrication errors still do affect the performance of MDLs and numerically evaluate the trade-off between efficiency and initial parameter selection, right at the onset of designing an MDL, i.e., even before putting it into fabrication. Here, we perform a statistical simulation-based study on MDLs (primarily operating in the THz regime) to analyse the impact of various fabrication imperfections (single and multiple) on the final structure as a function of the number of ring height levels. Furthermore, we also evaluate the performance of these same MDLs with the change in the refractive index of the constitutive material. We use focusing efficiency as the evaluation criterion in our numerical analysis; since it is the most fundamental property that can be used to compare and assess the performance of lenses (and MDLs) in general designed for any application with any specific functionality.

5.
Opt Lett ; 45(12): 3183, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538937

RESUMO

In Opt. Lett.44, 5450 (2019)OPLEDP0146-959210.1364/OL.44.005450, there were errors in the author listing and in one figure.

6.
Opt Lett ; 44(22): 5450-5452, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31730080

RESUMO

We experimentally demonstrate a ∼1-mm-thick near infrared camera comprised of a multi-level diffractive lens coupled with a conventional monochrome image sensor. We performed careful measurements of the point-spread function, the modulation transfer function, focusing efficiency, aberrations, and the field of view of the camera.

7.
Proc Natl Acad Sci U S A ; 116(43): 21375-21378, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591227

RESUMO

We experimentally demonstrate imaging in the long-wave infrared (LWIR) spectral band (8 µm to 12 µm) using a single polymer flat lens based upon multilevel diffractive optics. The device thickness is only 10 µm, and chromatic aberrations are corrected over the entire LWIR band with one surface. Due to the drastic reduction in device thickness, we are able to utilize polymers with absorption in the LWIR, allowing for inexpensive manufacturing via imprint lithography. The weight of our lens is less than 100 times those of comparable refractive lenses. We fabricated and characterized 2 different flat lenses. Even with about 25% absorption losses, experiments show that our flat polymer lenses obtain good imaging with field of view of 35° and angular resolution less than 0.013°. The flat lenses were characterized with 2 different commercial LWIR image sensors. Finally, we show that, by using lossless, higher-refractive-index materials like silicon, focusing efficiencies in excess of 70% can be achieved over the entire LWIR band. Our results firmly establish the potential for lightweight, ultrathin, broadband lenses for high-quality imaging in the LWIR band.

8.
Sci Rep ; 9(1): 5801, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967563

RESUMO

We demonstrate ultra-thin (1.5-3λ0), fabrication-error tolerant efficient diffractive terahertz (THz) optical elements designed using a computer-aided optimization-based search algorithm. The basic operation of these components is modeled using scalar diffraction of electromagnetic waves through a pixelated multi-level 3D-printed polymer structure. Through the proposed design framework, we demonstrate the design of various ultrathin planar THz optical elements, namely (i) a high Numerical Aperture (N.A.), broadband aberration rectified spherical lens (0.1 THz-0.3 THz), (ii) a spectral splitter (0.3 THz-0.6 THz) and (iii) an on-axis broadband transmissive hologram (0.3 THz-0.5 THz). Such an all-dielectric computational design-based approach is advantageous against metallic or dielectric metasurfaces from the perspective that it incorporates all the inherent structural advantages associated with a scalar diffraction based approach, such as (i) ease of modeling, (ii) substrate-less facile manufacturing, (iii) planar geometry, (iv) high efficiency along with (v) broadband operation, (vi) area scalability and (vii) fabrication error-tolerance. With scalability and error tolerance being two major bottlenecks of previous design strategies. This work is therefore, a significant step towards the design of THz optical elements by bridging the gap between structural and computational design i.e. through a hybrid design-based approach enabling considerably less computational resources than the previous state of the art. Furthermore, the approach used herein can be expanded to a myriad of optical elements at any wavelength regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...