Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 22(3): 1059-1066, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084865

RESUMO

The orbital degree of freedom, strongly coupled with the lattice and spin, is an important factor when designing correlated functions. Whether the long-range orbital order is stable at reduced dimensions and, if not, what the critical thickness is remains a tantalizing question. Here, we report the melting of orbital ordering, observed by controlling the dimensionality of the canonical eg1 orbital system LaMnO3. Epitaxial films are synthesized with vertically aligned orbital ordering planes on an orthorhombic substrate, so that reducing film thickness changes the two-dimensional planes into quasi-one-dimensional nanostrips. The orbital order appears to be suppressed below the critical thickness of about six unit cells by changing the characteristic phonon modes and making the Mn d orbital more isotropic. Density functional calculations reveal that the electronic energy instability induced by bandwidth narrowing via the dimensional crossover and the interfacial effect causes the absence of orbital order in the ultrathin thickness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...