Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560096

RESUMO

About 40% of the US construction workforce experiences high-level fatigue, which leads to poor judgment, increased risk of injuries, a decrease in productivity, and a lower quality of work. Therefore, it is essential to monitor fatigue to reduce its adverse effects and prevent long-term health problems. However, since fatigue demonstrates itself in several complex processes, there is no single standard measurement method for fatigue detection. This study aims to develop a system for continuous workers' fatigue monitoring by predicting the aerobic fatigue threshold (AFT) using forearm muscle activity and motion data. The proposed system consists of five modules: Data acquisition, activity recognition, oxygen uptake prediction, maximum aerobic capacity (MAC) estimation, and continuous AFT monitoring. The proposed system was evaluated on the participants performing fourteen scaffold-building activities. The results show that the AFT features have achieved a higher accuracy of 92.31% in assessing the workers' fatigue level compared to heart rate (51.28%) and percentage heart rate reserve (50.43%) features. Moreover, the overall performance of the proposed system on unseen data using average two-min AFT features was 76.74%. The study validates the feasibility of using forearm muscle activity and motion data to workers' fatigue levels continuously.


Assuntos
Indústria da Construção , Dispositivos Eletrônicos Vestíveis , Humanos , Antebraço , Redes Neurais de Computação , Extremidade Superior
2.
Sensors (Basel) ; 20(18)2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32942606

RESUMO

The workforce shortage is one of the significant problems in the construction industry. To overcome the challenges due to workforce shortage, various researchers have proposed wearable sensor-based systems in the area of construction safety and health. Although sensors provide rich and detailed information, not all sensors can be used for construction applications. This study evaluates the data quality and reliability of forearm electromyography (EMG) and inertial measurement unit (IMU) of armband sensors for construction activity classification. To achieve the proposed objective, the forearm EMG and IMU data collected from eight participants while performing construction activities such as screwing, wrenching, lifting, and carrying on two different days were used to analyze the data quality and reliability for activity recognition through seven different experiments. The results of these experiments show that the armband sensor data quality is comparable to the conventional EMG and IMU sensors with excellent relative and absolute reliability between trials for all the five activities. The activity classification results were highly reliable, with minimal change in classification accuracies for both the days. Moreover, the results conclude that the combined EMG and IMU models classify activities with higher accuracies compared to individual sensor models.


Assuntos
Confiabilidade dos Dados , Movimento , Dispositivos Eletrônicos Vestíveis , Indústria da Construção , Eletromiografia , Humanos , Ocupações , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...