Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310462, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700071

RESUMO

Low-dimensional materials based on graphene or graphite show a large variety of phenomena when they are subjected to irradiation with energetic electrons. Since the 1990s, electron microscopy studies, where a certain irradiation dose is unavoidable, have witnessed unexpected structural transformations of graphitic nanoparticles. It is recognized that electron irradiation is not only detrimental but also bears considerable potential in the formation of new graphitic structures. With the availability of aberration-corrected electron microscopes and the discovery of techniques to produce monolayers of graphene, detailed insight into the atomic processes occurring during electron irradiation became possible. Threshold energies for atom displacements are determined and models of different types of lattice vacancies are confirmed experimentally. However, experimental evidence for the configuration of interstitial atoms in graphite or adatoms on graphene remained indirect, and the understanding of defect dynamics still depends on theoretical concepts. This article reviews irradiation phenomena in graphene- or graphite-based nanomaterials from the scale of single atoms to tens of nanometers. Observations from the 1990s can now be explained on the basis of new results. The evolution of the understanding during three decades of research is presented, and the remaining problems are pointed out.

2.
J Phys Chem Lett ; 14(36): 8100-8106, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37657083

RESUMO

Spin-crossover particles of [Fe(Htrz)2trz](BF4) with sizes of some hundred nanometers are studied by in situ electron microscopy. Despite their high radiation sensitivity, it was possible to analyze the particles by imaging and diffraction so that a detailed analysis of crystallographic defects in individual particles became possible. The presence of one or several tilt boundaries, where the tilt axis is the direction of the polymer chains, is detected in each particle. An in situ exposure of the particles to temperature variations or short laser pulses to induce the spin crossover shows that the defect structure only changes after a high number of transformations between the low-spin and high-spin phases. The observations are explained by the anisotropy of the atomic architecture within the crystals, which facilitates defects between weakly linked crystallographic planes.

3.
Small ; 19(39): e2303701, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37246252

RESUMO

An unusual expansion dynamics of individual spin crossover nanoparticles is studied by ultrafast transmission electron microscopy. After exposure to nanosecond laser pulses, the particles exhibit considerable length oscillations during and after their expansion. The vibration period of 50-100 ns is of the same order of magnitude as the time that the particles need for a transition from the low-spin to the high-spin state. The observations are explained in Monte Carlo calculations using a model where elastic and thermal coupling between the molecules within a crystalline spin crossover particle govern the phase transition between the two spin states. The experimentally observed length oscillations are in agreement with the calculations, and it is shown that the system undergoes repeated transitions between the two spin states until relaxation in the high-spin state occurs due to energy dissipation. Spin crossover particles are therefore a unique system where a resonant transition between two phases occurs in a phase transformation of first order.

4.
Small ; 18(20): e2200414, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35426247

RESUMO

Thermal decomposition is a very efficient synthesis strategy to obtain nanosized metal oxides with controlled structures and properties. For the iron oxide nanoparticle synthesis, it allows an easy tuning of the nanoparticle's size, shape, and composition, which is often explained by the LaMer theory involving a clear separation between nucleation and growth steps. Here, the events before the nucleation of iron oxide nanocrystals are investigated by combining different complementary in situ characterization techniques. These characterizations are carried out not only on powdered iron stearate precursors but also on a preheated liquid reaction mixture. They reveal a new nucleation mechanism for the thermal decomposition method: instead of a homogeneous nucleation, the nucleation occurs within vesicle-like-nanoreactors confining the reactants. The different steps are: 1) the melting and coalescence of iron stearate particles, leading to "droplet-shaped nanostructures" acting as nanoreactors; 2) the formation of a hitherto unobserved iron stearate crystalline phase within the nucleation temperature range, simultaneously with stearate chains loss and Fe(III) to Fe(II) reduction; 3) the formation of iron oxide nuclei inside the nanoreactors, which are then ejected from them. This mechanism paves the way toward a better mastering of the metal oxide nanoparticles synthesis and the control of their properties.


Assuntos
Nanopartículas Metálicas , Óxidos , Meios de Cultura , Compostos Férricos/química , Ferro , Nanopartículas Metálicas/química , Óxidos/química , Estearatos
5.
Adv Mater ; 33(52): e2105586, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601766

RESUMO

Spin crossover (SCO) is a promising switching phenomenon when implemented in electronic devices as molecules, thin films or nanoparticles. Among the properties modulated along this phenomenon, optically induced mechanical changes are of tremendous importance as they can work as fast light-induced mechanical switches or allow to investigate and control microstructural strains and fatigability. The development of characterization techniques probing nanoscopic behavior with high spatio-temporal resolution allows to trigger and visualize such mechanical changes of individual nanoscopic objects. Here, ultrafast transmission electron microscopy (UTEM) is used to precisely probe the length changes of individual switchable nanoparticles induced thermally by nanosecond laser pulses. This allows revealing of the mechanisms of spin switching, leading to the macroscopic expansion of SCO materials. This study is conducted on individual pure SCO nanoparticles and SCO nanoparticles encapsulating gold nanorods that serve for plasmonic heating under laser pulses. Length changes are compared with time-resolved optical measurements performed on an assembly of these particles.

6.
ACS Nano ; 15(11): 17392-17400, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34128643

RESUMO

Nanodiamonds are interesting materials from the point of view of their biocompatibility and their chemical, spectroscopic, and mechanical properties. Current synthetic methods for nanodiamonds involve harsh environments, which are potentially hazardous in addition to being expensive. We report a low-temperature (423 K) hydrothermal approach to form nanodiamonds by using graphene-oxide or nitrated polycyclic aromatic hydrocarbons (naphthalene, anthracene, phenanthrene, or pyrene) as a starting material. The reaction products contain single-crystalline or twinned nanodiamonds with average diameters in the 2-3 nm range. Theoretical calculations prove that, at the nanoscale, sub-4 nm nanodiamonds may adopt a structure that is more stable than graphene-oxide and nitrated polycyclic aromatic hydrocarbons. Our findings show that sp2 carbon in the polycyclic aromatic precursor can be converted to sp3 carbon under unexpectedly moderate temperature conditions by using nanoscale precursors and thus offer a low-temperature approach for the synthesis of sub-4 nm nanodiamonds.

7.
Nat Commun ; 10(1): 3648, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409780

RESUMO

We show how the kinetics of a fast and irreversible chemical reaction in a nanocrystalline material at high temperature can be studied using nanosecond electron pulses in an electron microscope. Infrared laser pulses first heat a nanocrystalline oxide layer on a carbon film, then single nanosecond electron pulses allow imaging, electron diffraction and electron energy-loss spectroscopy. This enables us to study the evolution of the morphology, crystallography, and elemental composition of the system with nanosecond resolution. Here, NiO nanocrystals are reduced to elemental nickel within 5 µs after the laser pulse. At high temperatures induced by laser heating, reduction results first in a liquid nickel phase that crystallizes on microsecond timescales. We show that the reaction kinetics in the reduction of nanocrystalline NiO differ from those in bulk materials. The observation of liquid nickel as a transition phase explains why the reaction is first order and occurs at high rates.

8.
Nat Commun ; 9(1): 1084, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540689

RESUMO

Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.

9.
Ultramicroscopy ; 188: 41-47, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29547872

RESUMO

We implement a parametric study with single electron pulses having a 7 ns duration to find the optimal conditions for imaging, diffraction, and electron energy-loss spectroscopy (EELS) in the single-shot approach. Photoelectron pulses are generated by illuminating a flat tantalum cathode with 213 nm nanosecond laser pulses in a 200 kV transmission electron microscope (TEM) with thermionic gun and Wehnelt electrode. For the first time, an EEL spectrometer is used to measure the energy distribution of single nanosecond electron pulses which is crucial for understanding the ideal imaging conditions of the single-shot approach. By varying the laser power, the Wehnelt bias, and the condenser lens settings, the optimum TEM operation conditions for the single-shot approach are revealed. Due to space charge and the Boersch effect, the energy width of the pulses under maximized emission conditions is far too high for imaging or spectroscopy. However, by using the Wehnelt electrode as an energy filter, the energy width of the pulses can be reduced to 2 eV, though at the expense of intensity. The first EEL spectra taken with nanosecond electron pulses are shown in this study. With 7 ns pulses, an image resolution of 25 nm is attained. It is shown how the spherical and chromatic aberrations of the objective lens as well as shot noise limit the resolution. We summarize by giving perspectives for improving the single-shot time-resolved approach by using aberration correction.

10.
Nano Lett ; 17(8): 5119-5125, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28737928

RESUMO

With the rapid development of nanoscale structuring technology, the precision in the etching reaches the sub-10 nm scale today. However, with the ongoing development of nanofabrication the etching mechanisms with atomic precision still have to be understood in detail and improved. Here we observe, atom by atom, how preferential facets form in CaO crystals that are etched by an electron beam in an in situ high-resolution transmission electron microscope (HRTEM). An etching mechanism under electron beam irradiation is observed that is surprisingly similar to chemical etching and results in the formation of nanofacets. The observations also explain the dynamics of surface roughening. Our findings show how electron beam etching technology can be developed to ultimately realize tailoring of the facets of various crystalline materials with atomic precision.

11.
Chem Commun (Camb) ; 51(76): 14393-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26271207

RESUMO

The straightforward "dressing" of macroscopically shaped supports (i.e.ß-SiC and α-Al2O3) with a mesoporous and highly nitrogen-doped carbon-phase starting from food-processing raw materials is described. The as-prepared composites serve as highly efficient and selective metal-free catalysts for promoting industrial key-processes at the heart of renewable energy technology and environmental protection.

12.
Beilstein J Nanotechnol ; 6: 559-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821697

RESUMO

Linear strings of sp(1)-hybridized carbon atoms are considered as a possible phase of carbon since decades. Whereas the debate about the stability of the corresponding bulk phase carbyne continues until today, the existence of isolated chains of carbon atoms has meanwhile been corroborated experimentally. Since graphene, as the two-dimensional sp(2)-bonded allotrope of carbon, has become a vast field, the question about the importance of one-dimensional carbon became of renewed interest. The present article gives an overview of the work that has been carried out on chains of carbon atoms in the past one or two decades. The review concentrates on isolated chains of carbon atoms and summarizes the experimental observations to date. While the experimental information is still very limited, many calculations of the physical and chemical properties have been published in the past years. Some of the most important theoretical studies and their importance in the present experimental situation are reviewed.

13.
Small ; 11(11): 1253-7, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25367225

RESUMO

Two-dimensional crystals of beta-copper sulfide are synthesized in an in-situ electron microscopy experiment. Copper crystals are deposited on an amorphous carbon film containing sulfur. The carbon film graphitizes upon heating and electron irradiation and allows the reaction of Cu and S towards two-dimensional Cu(2) S crystals. These are energetically favourable and bonded via van der Waals interactions to the graphitic substrate.

14.
Chemphyschem ; 15(16): 3572-9, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25139263

RESUMO

Succinate: quinone reductases (SQRs) are the enzymes that couple the oxidation of succinate and the reduction of quinones in the respiratory chain of prokaryotes and eukaryotes. Herein, we compare the temperature-dependent activity and structural stability of two SQRs, the first from the mesophilic bacterium Escherichia coli and the second from the thermophilic bacterium Thermus thermophilus, using a combined electrochemical and infrared spectroscopy approach. Direct electron transfer was achieved with full membrane protein complexes at single-walled carbon nanotube (SWNT)-modified electrodes. The possible structural factors that contribute to the temperature-dependent activity of the enzymes and, in particular, to the thermostability of the Thermus thermophilus SQR are discussed.


Assuntos
Complexo II de Transporte de Elétrons/química , Nanotubos de Carbono/química , Catálise , Técnicas Eletroquímicas , Eletrodos , Complexo II de Transporte de Elétrons/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Escherichia coli/enzimologia , Estabilidade Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Thermus thermophilus/enzimologia
15.
Nanoscale ; 5(19): 9123-8, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23907556

RESUMO

We present an actuator, consisting of a bilayer of graphene and graphene oxide, which allows us to exert forces in micromechanical systems that are at least 50 times higher than reported for other actuators of comparable size. The durability of such a device and stability during many cycles are demonstrated, and the related mechanism is discussed in detail.


Assuntos
Grafite/química , Metais/química , Técnicas Eletroquímicas , Nanoestruturas/química , Óxidos/química , Temperatura
16.
Nano Lett ; 13(8): 3487-93, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23879314

RESUMO

The first electrical-transport measurements of monatomic carbon chains are reported in this study. The chains were obtained by unraveling carbon atoms from graphene ribbons while an electrical current flowed through the ribbon and, successively, through the chain. The formation of the chains was accompanied by a characteristic drop in the electrical conductivity. The conductivity of the chains was much lower than previously predicted for ideal chains. First-principles calculations using both density functional and many-body perturbation theory show that strain in the chains has an increasing effect on the conductivity as the length of the chains increases. Indeed, carbon chains are always under varying nonzero strain that transforms their atomic structure from the cumulene to the polyyne configuration, thus inducing a tunable band gap. The modified electronic structure and the characteristics of the contact to the graphitic periphery explain the low conductivity of the locally constrained carbon chain.

17.
ACS Nano ; 7(6): 5175-80, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23692544

RESUMO

Crystalline hexagonally ordered silicon oxide layers with a thickness of less than a nanometer are grown on transition metal surfaces in an in situ electron microscopy experiment. The nucleation and growth of silica bilayers and monolayers, which represent the thinnest possible ordered structures of silicon oxide, are monitored in real time. The emerging layers show structural defects reminiscent of those in graphene and can also be vitreous. First-principles calculations provide atomistic insight into the energetics of the growth process. The interplay between the gain in silica-metal interaction energy due to their epitaxial match and energy loss associated with the mechanical strain of the silica network is addressed. The results of calculations indicate that both ordered and vitreous mono/bilayer structures are possible, so that the actual morphology of the layer is defined by the kinetics of the growth process.

19.
Nat Commun ; 3: 879, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22673906

RESUMO

Building entire multiple-component devices on single nanowires is a promising strategy for miniaturizing electronic applications. Here we demonstrate a single nanowire capacitor with a coaxial asymmetric Cu-Cu(2)O-C structure, fabricated using a two-step chemical reaction and vapour deposition method. The capacitance measured from a single nanowire device corresponds to ~140 µF cm(-2), exceeding previous reported values for metal-insulator-metal micro-capacitors and is more than one order of magnitude higher than what is predicted by classical electrostatics. Quantum mechanical calculations indicate that this unusually high capacitance may be attributed to a negative quantum capacitance of the dielectric-metal interface, enhanced significantly at the nanoscale.


Assuntos
Nanotecnologia/métodos , Nanofios/química , Capacitância Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...