Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Org Synth ; 17(2): 117-130, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32003697

RESUMO

BACKGROUND: SO3H-functionalized zeolite-Y was prepared and used as a catalyst for the synthesis of 2-aryl-N-benzimidazole-4-thiazolidinones and tri-substituted imidazoles at ambient conditions. OBJECTIVE: The goals of this catalytic method include excellent yields and high purity, inexpensive procedure and ease of product isolation, the use of nontoxic and heterogeneous acid catalyst, shorter reaction times and milder conditions. MATERIALS AND METHODS: NMR spectra were recorded on Brucker spectrophotometer using Me4Si as internal standard. Mass spectra were recorded on an Agilent Technology 5975C VL MSD with tripe-axis detector. FTIR spectra were obtained with KBr disc on a galaxy series FT-IR 5000 spectrometer. The surface morphology of nanostructures was analyzed by FE-SEM (EVO LS 10, Zeiss, Carl Zeiss, Germany). BET analysis were measured at 196 °C by a Japan Belsorb II system after the samples were vacuum dried at 150°C overnight. RESULTS: The NSZ was characterized by FT-IR, FESEM, EDX, XRF, and BET. The catalytic activity of NSZ was investigated for synthesis of 1,3-tiazolidin-4-ones in H2O/Acetone at room temperature. Moreover, NSZ was used for synthesis of tri-substituted imidazoles at 60 °C via solvent-free condensation. Different kinds of aromatic aldehydes were converted to the corresponding of products with good to excellent yields. CONCLUSION: Sulfonated zeolite-Y was as an efficient catalyst for the preparation of N-benzimidazole-2-aryl-1,3- thiazolidin-4-ones and 2,4,5-triaryl-1H-imidazoles. High reaction rates, elimination toxic solvent, simple experimental procedure and reusability of the catalyst are the important features of this protocol.

2.
RSC Adv ; 10(68): 41410-41423, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35516548

RESUMO

In this investigation, a nanoporous zeolite-NaY supported sulfonic acid was synthesized and Ni(ii) ions were successfully stabilized on SO3H@zeolite-Y (Ni/SO3H@zeolite-Y). This novel type of zeolitic nanocomposite was characterized using various techniques including FT-IR, FE-SEM, TGA, BET and EDX. Ni/SO3H@zeolite-Y was used as a multi-functional and highly active nanocatalyst for the three-component synthesis of 3-benzimidazolyl-1,3-thiazolidin-4-ones and new 3-benzthiazoleyl-1,3-thiazolidin-4-ones via cyclocondensation of 2-aminobenzimidazole or 2-aminobenzothiazole, aromatic aldehydes and thioglycolic acid in acetone-H2O at room temperature. This economical chemical procedure has advantages such as excellent yield in short reaction times, convenient manipulation and high purity of products, applicability to a broad range of substrates, and the use of a nontoxic and heterogeneous acid catalyst with good reusability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...