Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(24): e2309572, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155584

RESUMO

Exploring combinatorial materials, as well as rational device configuration design, are assumed to be the key strategies for deploying versatile electrochemical devices. MXene sheets have revealed a high hydrophilic surface with proper mechanical and electrical characteristics, rendering them supreme additive candidates to integrate in electrospun electrochemical power tools. The synergetic effects of MXene 2D layers with the nanofibrous networks can boost actuator responsive ability, battery capacity retention, fuel cell stability, sensor sensitivity, and supercapacitor areal capacitance. Their superior mechanical features can be endowed to the electrospun layers through the embedding of the MXene additive. In this review, the preparation and inherent features of the MXene configurations are briefly evaluated. The fabrication and overall performance of the MXene-loaded nanofibers applicable in electrochemical actuators, batteries, fuel cells, sensors, and supercapacitors are comprehensively figured out. Eventually, an outlook on the future development of MXene-based electrospun composites is presented. A substantial focus has been devoted to date to engineering conjugated MXene and electrospun fibrous frames. The potential performance of the MXene-decorated nanofibers presents a bright future of nanoengineering toward technological growth. Meanwhile, a balance between the pros and cons of the synthesized MXene composite layers is worthwhile to consider in the future.

2.
ACS Omega ; 8(46): 43388-43407, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027388

RESUMO

Lithium-ion batteries (LIBs) are accounted as promising power tools, applicable in a wide range of energy-based equipment, from portable devices to electric vehicles. Meanwhile, approaching a cost-effective, environmentally friendly, and safe LIB array has remained sluggish yet. In this regard, cellulose, as a nontoxic natural renewable polymer, has provided a stable and cohesive electrode structure with excellent mechanical stability and reduced electrode cracking or delamination during cycling. Additionally, the porous configuration of the cellulose allows for efficient and faster ion transport as a separator component. Miniaturizing cellulose and its derivatives have revealed more fabulous characteristics for the anode, cathode, and separator resulting from the increased surface-to-volume ratio and superior porosity, as well as their thin and lightweight architectures. The focal point of this review outlines the challenges relating to the extraction and electrospinning of cellulose-based nanofibers. Additionally, the efforts to employ these membranes as the LIBs' components are elucidated. Correspondingly, despite the great performance of cellulose-based LIB structures, a research gap is sensed in this era, possibly due to the difficulties in processing the electrospun cellulose fibers. Hence, this review can provide a source of recent advancements and innovations in cellulose-based electrospun LIBs for researchers who aim to develop versatile battery structures using green materials, worthwhile, and eco-friendly processing techniques.

3.
Dalton Trans ; 52(40): 14564-14572, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782116

RESUMO

The Ni-rich layered oxide cathode has shown high energy density, proper rate capability, and longevity of the rechargeable battery, while poor stability and capacity fading are assumed to be its common cons. To address this obstacle, prospective cathode materials are synthesized by integrating the lithium transition metal oxides with an artificial cathode electrolyte interphase (CEI) layer. Herein, plasma-enhanced atomic layer deposition (PEALD) is employed to coat the LiNi0.8Mn0.1Co0.1O2 (NMC811) electrode with Al2O3 and MoO3. The combined results from morphological examinations revealed the formation of uniform Al2O3 and MoO3 sheets after 200 cycles of PEALD coating. Consistent results from the XRD analysis demonstrate that Al2O3 and MoO3 artificial CEIs can reduce Li-Ni mixing. The cyclic voltammetry tests show the oxidation-reduction kinetic. The modified NMC811 structures with Al2O3 and MoO3 represent a remarkable improvement in terms of capacity retention. The coated cathode with Al2O3 clearly outperforms the modified configuration with MoO3 concerning ionic conductivity, charge/discharge reversibility, and capacity retention. The promising results obtained in this study open the possibility of synthesizing Ni-rich cathodes with enhanced electrochemical performance.

4.
Mater Horiz ; 9(12): 2914-2948, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36226580

RESUMO

Electrochemical power tools are regarded as essential keys in a world that is becoming increasingly reliant on fossil fuels in order to meet the challenges of rapidly depleting fossil fuel supplies. Additionally, due to the industrialization of societies and the growth of diseases, the need for sensitive, reliable, inexpensive, and portable sensors and biosensors for noninvasive monitoring of human health and environmental pollution is felt more than ever before. In recent decades, electrospun fibers have emerged as promising candidates for the fabrication of highly efficient electrochemical devices, such as actuators, batteries, fuel cells, supercapacitors, and biosensors. Meanwhile, the use of synthetic polymers in the fabrication of versatile electrochemical devices has raised environmental concerns, leading to an increase in the quest for natural polymers. Natural polymers are primarily derived from microorganisms and plants. Despite the challenges of processing bio-based electrospun fibers, employing natural nanofibers in the fabrication of electrochemical devices has garnered tremendous attention in recent years. Here, various natural polymers and the strategies employed to fabricate various electrospun biopolymers are briefly covered. The recent advances and research strategies used to apply the bio-based electrospun membranes in different electrochemical devices are carefully summarized, along with the scopes in various advanced technologies. A comprehensive and critical discussion about the use of biopolymer-based electrospun fibers as the potential alternative to non-renewable ones in future technologies is briefly highlighted. This review will serve as a field opening platform for using different biopolymer-based electrospun fibers to advance the electrochemical device-based renewable and sustainable technologies, which will be of high interest to a large community. Accordingly, future studies should focus on feasible and cost-effective extraction of biopolymers from natural resources as well as fabrication of high-performance nanofibrous biopolymer-based components applicable in various electrochemical devices.


Assuntos
Técnicas Biossensoriais , Nanofibras , Humanos , Nanofibras/química , Biopolímeros , Polímeros , Fontes de Energia Elétrica
5.
Polymers (Basel) ; 13(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073391

RESUMO

Electrochemical devices convert chemical reactions into electrical energy or, vice versa, electricity into a chemical reaction. While batteries, fuel cells, supercapacitors, solar cells, and sensors belong to the galvanic cells based on the first reaction, electrolytic cells are based on the reversed process and used to decompose chemical compounds by electrolysis. Especially fuel cells, using an electrochemical reaction of hydrogen with an oxidizing agent to produce electricity, and electrolytic cells, e.g., used to split water into hydrogen and oxygen, are of high interest in the ongoing search for production and storage of renewable energies. This review sheds light on recent developments in the area of electrospun electrochemical devices, new materials, techniques, and applications. Starting with a brief introduction into electrospinning, recent research dealing with electrolytic cells, batteries, fuel cells, supercapacitors, electrochemical solar cells, and electrochemical sensors is presented. The paper concentrates on the advantages of electrospun nanofiber mats for these applications which are mostly based on their high specific surface area and the possibility to tailor morphology and material properties during the spinning and post-treatment processes. It is shown that several research areas dealing with electrospun parts of electrochemical devices have already reached a broad state-of-the-art, while other research areas have large space for future investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...