Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 70(1): 26-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37699145

RESUMO

Airway basal stem cells (BSCs) play a critical role in epithelial regeneration. Whether coronavirus disease (COVID-19) affects BSC function is unknown. Here, we derived BSC lines from patients with COVID-19 using tracheal aspirates (TAs) to circumvent the biosafety concerns of live-cell derivation. We show that BSCs derived from the TAs of control patients are bona fide bronchial BSCs. TA BSCs from patients with COVID-19 tested negative for severe acute respiratory syndrome coronavirus 2 RNA; however, these so-termed COVID-19-exposed BSCs in vitro resemble a predominant BSC subpopulation uniquely present in patients with COVID-19, manifested by a proinflammatory gene signature and STAT3 hyperactivation. Furthermore, the sustained STAT3 hyperactivation drives goblet cell differentiation of COVID-19-exposed BSCs in an air-liquid interface. Last, these phenotypes of COVID-19-exposed BSCs can be induced in control BSCs by cytokine cocktail pretreatment. Taken together, acute inflammation in COVID-19 exerts a long-term impact on mucociliary differentiation of BSCs.


Assuntos
COVID-19 , Células Epiteliais , Humanos , Células-Tronco , Diferenciação Celular/fisiologia , Brônquios
2.
Am J Respir Crit Care Med ; 207(9): 1214-1226, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731066

RESUMO

Rationale: Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm and lung hypoplasia. The pathophysiology of lung defects in CDH is poorly understood. Objectives: To establish a translational model of human airway epithelium in CDH for pathogenic investigation and therapeutic testing. Methods: We developed a robust methodology of epithelial progenitor derivation from tracheal aspirates of newborns. Basal stem cells (BSCs) from patients with CDH and preterm and term non-CDH control subjects were derived and analyzed by bulk RNA sequencing, assay for transposase accessible chromatin with sequencing, and air-liquid interface differentiation. Lung sections from fetal human CDH samples and the nitrofen rat model of CDH were subjected to histological assessment of epithelial defects. Therapeutics to restore epithelial differentiation were evaluated in human epithelial cell culture and the nitrofen rat model of CDH. Measurements and Main Results: Transcriptomic and epigenetic profiling of CDH and control BSCs reveals a proinflammatory signature that is manifested by hyperactive nuclear factor kappa B and independent of severity and hernia size. In addition, CDH BSCs exhibit defective epithelial differentiation in vitro that recapitulates epithelial phenotypes found in fetal human CDH lung samples and fetal tracheas of the nitrofen rat model of CDH. Furthermore, blockade of nuclear factor kappa B hyperactivity normalizes epithelial differentiation phenotypes of human CDH BSCs in vitro and in nitrofen rat tracheas in vivo. Conclusions: Our findings have identified an underlying proinflammatory signature and BSC differentiation defects as a potential therapeutic target for airway epithelial defects in CDH.


Assuntos
Hérnias Diafragmáticas Congênitas , Recém-Nascido , Ratos , Humanos , Animais , NF-kappa B , Ratos Sprague-Dawley , Éteres Fenílicos , Pulmão/patologia , Modelos Animais de Doenças
3.
Colloids Surf B Biointerfaces ; 220: 112926, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257281

RESUMO

In recent times, carbon dots (CDs) are emerging for numerous interdisciplinary applications by modulating their inherent chemical functionality during or post-synthesis modification. The current study reports the hydrothermal synthesis of polyvinylpyrrolidone K-30 (PVP) passivated clove bud-derived carbon dots (PPCCDs) for multifaceted applications. The adopted technique is facile and environmentally friendly for the production of CDs with in situ PVP passivation. Physicochemical characterization of CDs is performed using various spectroscopic and microscopic techniques. The study reveals the formation of nitrogen-doped spherical PPCCDs with an average hydrodynamic size of ∼ 4.9 nm. It is also evident that there is modulation in optical properties and quantum efficiency as a result of PVP passivation. The study further demonstrates their suitability in biological environments as observed by pH stability, photostability, and cytocompatibility results. PPCCDs have shown significant antioxidant activity against DPPH (EC50: 57 µg/mL), suppression of superoxide anion radical (EC50: 53 µg/mL), and an efficient catalytic activity towards degradation of Rhodamine-B (Rh-B) dye. UV-Visible spectroscopy unveil the reaction mechanism during antioxidant and catalytic activities of CDs that are validated by Electron paramagnetic resonance (EPR) spectroscopy with an indication of effective electron or proton donating abilities. Its bioimaging potential is evidenced through cellular fluorescence imaging with 3T3 and L929 cell lines.


Assuntos
Pontos Quânticos , Syzygium , Carbono/química , Antioxidantes/farmacologia , Pontos Quânticos/química , Povidona , Nitrogênio/química , Catálise , Corantes Fluorescentes/química
4.
STAR Protoc ; 3(2): 101390, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35600918

RESUMO

Patient-specific airway basal stem cells (BSCs) can be derived from tracheal aspirate (TA) samples from intubated patients, thus providing an invaluable lung stem cell derivation method that bypasses the need for lung tissue. The primary culture of BSCs provides the ideal model to study the function and differentiation of the conducting lung epithelium. This protocol outlines the specific steps for isolation, culture maintenance, passaging, freezing, thawing, differentiation, and immunofluorescence characterization of human TA-derived airway BSCs. For complete details on the use and execution of this protocol, please refer to Lu et al. (2021).


Assuntos
Pulmão , Células-Tronco , Diferenciação Celular , Epitélio , Humanos
5.
J Mater Chem B ; 9(34): 6856-6869, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34396378

RESUMO

Biomimetic delivery of osteoinductive growth factors via an osteoconductive matrix is an interesting approach for stimulating bone regeneration. In this context, the bone extracellular matrix (ECM) has been explored as an optimal delivery system, since it releases growth factors in a spatiotemporal manner from the matrix. However, a bone ECM hydrogel alone is weak, unstable, and prone to microbial contamination and also has been reported to have significantly reduced bone morphogenic protein-2 (BMP-2) post decellularization. In the present work, a microsphere embedded osteoinductive decellularized bone ECM/oleoyl chitosan based hydrogel construct (BOC) was developed as a matrix allowing dual delivery of an anti-resorptive drug (alendronate, ALN, via the microspheres) and BMP-2 (via the hydrogel) for a focal tibial defect in a rabbit model. The synthesized gelatin microspheres (GMs) were spherical in shape with diameter ∼32 µm as assessed by SEM analysis. The BOC construct showed sustained release of ALN and BMP-2 under the studied conditions. Interestingly, amniotic membrane-derived stem cells (HAMSCs) cultivated on the hydrogel construct demonstrated excellent biocompatibility, cell viability, and active proliferation potential. Additionally, cell differentiation on the constructs showed an elevated expression of osteogenic genes in an RT-PCR study along with enhanced mineralized matrix deposition as demonstrated by alkaline phosphatase (ALP) assay and alizarin red assay. The hydrogel construct was witnessed to have improved neo-vascularization potential in a chick chorioalantoic membrane (CAM) assay. Also, histological and computed tomographic findings evidenced enhanced bone regeneration in the group treated with the BOC/ALN/BMP hydrogel construct in a rabbit tibial defect model. To conclude, the developed multifunctional hydrogel construct acts as an osteoinductive and osteoconductive platform facilitating controlled delivery of ALN and BMP-2, essential for stimulating bone tissue regeneration.


Assuntos
Alendronato/química , Materiais Biocompatíveis/química , Proteína Morfogenética Óssea 2/química , Regeneração Óssea , Hidrogéis/química , Animais , Hidrogéis/síntese química , Teste de Materiais , Microesferas , Tamanho da Partícula , Suínos
6.
Mol Ther Methods Clin Dev ; 21: 209-236, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33850952

RESUMO

There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.

7.
Mater Sci Eng C Mater Biol Appl ; 119: 111604, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321648

RESUMO

Hydrogels derived from decellularized extracellular matrix (ECM) have been widely used as a bioactive matrix for facilitating functional bone tissue regeneration. However, its poor mechanical strength and fast degradation restricts the extensive use for clinical application. Herein, we present a crosslinked decellularized bone ECM (DBM) and fatty acid modified chitosan (oleoyl chitosan, OC) based biohybrid hydrogel (DBM/OC) for delivering human amnion-derived stem cells (HAMSCs) for bone regeneration. DBM/OC hydrogel were benchmarked against collagen-I/OC (Col-I/OC) based hydrogel in terms of their morphological characteristics, rheological analysis, and biological performances. DBM/OC hydrogel with its endogenous growth factors recapitulates the nanofibrillar 3D tissue microenvironment with improved mechanical strength and also exhibited antimicrobial potential along with superior proliferation/differentiation ability. HAMSCs encapsulation potential of DBM/OC hydrogel was established by well spread cytoskeleton morphology post 14 days of cultivation. Further, ex-vivo chick chorioallantoic membrane (CAM) assay revealed excellent neovascularization potential of DBM/OC hydrogel. Subcutaneously implanted DBM/OC hydrogel did not trigger any severe immune response or infection in the host after 21 days. Also, DBM/OC hydrogels and HAMSCs encapsulated DBM/OC hydrogels were implanted at the tibial defect in a rabbit model to assess the bone regeneration ability. Quantitative micro-CT and histomorphological analysis demonstrated that HAMSCs encapsulated DBM/OC hydrogel can support more mature mineralized bone formation at the defect area compared to DBM/OC hydrogel or SHAM. These findings manifested the efficacy of DBM/OC hydrogel as a functional cell-delivery vehicle and osteoinductive template to accelerate bone regeneration.


Assuntos
Quitosana , Hidrogéis , Animais , Matriz Óssea , Regeneração Óssea , Matriz Extracelular , Hidrogéis/farmacologia , Coelhos
8.
Biomacromolecules ; 22(2): 514-533, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289564

RESUMO

Low strength and rapid biodegradability of acellular dermal matrix (ADM) restrict its wider clinical application as a rapid cell delivery platform in situ for management of burn wounds. Herein, the extracted ADM was modified by a dual cross-linking approach with ionic crosslinking using chitosan and covalent cross-linking using an iodine-modified 2,5-dihydro-2,5-dimethoxy-furan cross-linker, termed as CsADM-Cl. In addition, inherent growth factors and cytokines were found to be preserved in CsADM-Cl, irrespective of ionic/covalent crosslinking. CsADM-Cl demonstrated improvement in post crosslinking stiffness with a decreased biodegradation rate. This hybrid crosslinked hydrogel supported adhesion, proliferation, and migration of human foreskin-derived fibroblasts and keratinocytes. Also, the angiogenic potential of CsADM-Cl was manifested by chick chorioallantoic membrane assay. CsADM-Cl showed excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Moreover, CsADM-Cl treated full thickness burn wounds and demonstrated rapid healing marked with superior angiogenesis, well-defined dermal-epidermal junctions, mature basket weave collagen deposition, and development of more pronounced secondary appendages. Altogether, the bioactive CsADM-Cl hydrogel established significant clinical potential to support wound healing as an apt injectable antibacterial matrix to encounter unmet challenges concerning critical burn wounds.


Assuntos
Derme Acelular , Queimaduras , Queimaduras/tratamento farmacológico , Matriz Extracelular , Humanos , Hidrogéis , Cicatrização
9.
J Mater Chem B ; 8(40): 9277-9294, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32996553

RESUMO

Impaired skin regeneration in chronic wounds like in diabetes corresponds to high oxidative stress, poor angiogenesis and insufficient collagen hyperplasia. Therefore, a multifaceted strategy for treatment is required to address critical issues associated with chronic wound healing. Fascinating application of nanomaterials in chronic wounds is still limited; hence, in the present work bioactive solubilized decellularized dermal matrix (sADM) was employed to form a hydrogel with chitosan (CTS) at physiological pH/temperature and modified with reactive oxygen species (ROS) scavenging carbon nanodots (ND). A detailed in vitro investigation found that the ND modified bioactive hydrogel (CsADMND) is suitable for human amniotic membrane derived stem cell (hAMSC) delivery. Also, CsADMND was observed to possess a good ROS scavenging property, hemocompatibility and pro-angiogenic potential as demonstrated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), haemolysis and chick chorioallantoic membrane (CAM) assay, respectively. The hybrid hydrogel promoted migration of cells in vitro in scratch assay owing to its antioxidant potential and the presence of bioactive moieties. Further, its efficacy in healing full thickness (FT) chronic wounds was evaluated in a streptozotocin (STZ) induced diabetic model. The CsADMND hydrogel after association with hAMSCs led to stimulation of early angiogenesis, superior collagen deposition, rapid wound closure, complete reepithelialisation, and formation of distinct organized dermal epidermal junctions (DEJ) post 21 days of healing. These results suggest that the hAMSC laden CsADMND hydrogel may serve as a promising therapeutic strategy for the management of chronic wounds.


Assuntos
Derme Acelular , Células-Tronco Embrionárias Humanas/transplante , Hidrogéis/química , Pontos Quânticos/uso terapêutico , Cicatrização/efeitos dos fármacos , Âmnio/citologia , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Carbono/química , Quitosana/química , Diabetes Mellitus Experimental/fisiopatologia , Escherichia coli/efeitos dos fármacos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Masculino , Testes de Sensibilidade Microbiana , Neovascularização Fisiológica/efeitos dos fármacos , Pontos Quânticos/química , Ratos Wistar , Reepitelização/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
10.
Mater Sci Eng C Mater Biol Appl ; 113: 110990, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32487403

RESUMO

Critical bone defects arising from traumatic injury and diseases are of major health concern since they are unable to heal spontaneously without clinical intervention. In this context, bone tissue engineering provides an attractive approach to treat bone defects by providing a bioactive template which has the potential to guide osseous tissue regeneration. In this study, porous hybrid placental extracellular matrix sponge (PIMS) was fabricated by a combinatorial method using silk fibroin (SF)/placental derived extracellular matrix and subsequently evaluated its efficacy towards bone tissue regeneration. The presence of intrinsic growth factors was evidenced by immunoblotting of the extracted proteins derived from the placental derived extracellular matrix. This growth factor rich PIMS lends a unique bioactive scaffolding to human amniotic mesenchymal stem cells (HAMSCs) which supported enhanced proliferation as well as superior osteogenic differentiation. Gene expression studies demonstrated significant up-regulation of osteogenic related genes in the PIMS group. PIMS when implanted in the chick chorioallantoic membrane, significantly attracted allantoic vessels revealing its potential to stimulate angiogenesis ex vivo. Furthermore, no severe immune response to the host was observed on subcutaneous implantation of PIMS in vivo. Instead, it supported the formation of blood vessels, revealing its outstanding biocompatibility. Additionally, critical tibial defects treated with PIMS demonstrated higher bone volume after six weeks when analyzed by micro-CT, which was accompanied by high mineral density. Histological and immunofluorescence studies validated the results and revealed enhanced osseous tissue regeneration after six weeks of surgery. All these findings recapitulated that the growth factors incorporated bioactive PIMS could perform as an appropriate matrix for osteogenic differentiation and efficient bone regeneration.


Assuntos
Bandagens , Materiais Biocompatíveis/química , Regeneração Óssea , Matriz Extracelular/química , Fibroínas/química , Placenta/metabolismo , Animais , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Doenças Ósseas/patologia , Doenças Ósseas/terapia , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Força Compressiva , Matriz Extracelular/metabolismo , Feminino , Hemólise/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Porosidade , Gravidez , Coelhos , Alicerces Teciduais/química
11.
Mol Biotechnol ; 62(6-7): 335-343, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32236842

RESUMO

Emergence of multidrug resistant strains and extremely drug resistant strains of Mycobacterium tuberculosis is due to its ability to form persister cells. The formation of persister cells is assumed to be triggered due to the presence of large number of toxin-antitoxin (TA) systems in its genome. Mtb genome encodes 47 VapBC TA systems. In this work, we aim to biochemically characterize VapC46 toxin of the VapBC46 TA operon from Mycobacterium tuberculosis. Heterologous expression of VapC46 in E. coli is shown to exhibit bacteriostasis and toxicity alters the surface morphology of the E. coli cells. VapC46 is shown to possess ribonuclease activity in a magnesium-dependent manner. Using FRET and pull down assay, VapC46 is shown to interact with VapB46 antitoxin. A model of VapC46 is shown to resemble PIN domain family of proteins and reveals the putative active site required for its ribonuclease activity.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Genoma Bacteriano/genética , Mycobacterium tuberculosis/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Sistemas Toxina-Antitoxina/genética , Sistemas Toxina-Antitoxina/fisiologia
12.
ACS Biomater Sci Eng ; 5(1): 149-164, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33405857

RESUMO

Tissue engineering has a major emphasis in creating tissue specific extracellular ambiance by altering chemical functionalities of scaffold materials. Heterogeneity of osteochondral tissue necessitates tailorable bone and cartilage specific extracellular environment. Carboxylate- and sulfate-functionalized glycosaminoglycans (GAGs) in cartilage extracellular matrix (ECM) create an acidic ambience to support chondrogenic activity, whereas phosphate-rich environment in bone enables chelation of calcium leading to the formation of mineralized matrix along with an alkaline environment to support osteogenesis. In this study, chitosan, a naturally occurring GAGs, was functionalized with phosphate/sulfate groups analogous to bone/cartilage ECM and incorporated in thermogelling agarose hydrogel for delivery to osteochondral defects. In vitro studies revealed significantly higher adhesion and proliferation of adipose derived mesenchymal stem cells (ADMSCs) with blended hydrogels as compared to that of native agarose. Cell differentiation and RT-PCR studies of the phosphorylated hydrogels revealed higher osteogenic potential, while sulfated hydrogels demonstrated enhanced chondrogenic activity in comparison to agarose. Recovery of osteochondral defects after delivery of the thermoresponsive agarose-based hydrogels decorated with phosphorylated derivatives showed significantly higher bone formation. On the other hand, cartilage formation was significant with chitosan sulfate decorated hydrogels. The study highlights the role of chitosan derivatives in osteochondral defect healing, especially phosphorylated ones as bone promoter, whereas sulfated ones act as cartilage enhancer, which was quantitatively distinguished through micro-CT-based noninvasive imaging and analysis.

13.
J Biomed Mater Res B Appl Biomater ; 107(5): 1634-1644, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30332525

RESUMO

Composition and architecture of scaffolds are the most important factors determining the performance of skin substitutes. In this work, morphology induced unique physical and biological characteristics of compatibilized TPU-PDMS blend scaffolds at 90:10, 80:20, and 70:30 blend ratios of TPU and PDMS was studied. The fiber morphology, porosity, surface wettability, and mechanical properties of electrospun scaffolds were distinctly influenced by the presence of PDMS. Interestingly, the scaffold architecture varied from electrospun fibers to porous fibers and finally occurrence of unique porous beads noticed at 30% PDMS in the microstructure which was confirmed using FESEM. Micro-CT analysis revealed that the porosity of electrospun scaffolds was enhanced from 61% to 79% with 30 parts of PDMS addition. Moreover, MTT assay and cell proliferation were studied using human skin fibroblast cells and found to be significantly enhanced with the PDMS percentage. TPU-PDMS blends offer better overall performance at 70:30 blend ratio of TPU and PDMS (T70P30). Only 4% of hemolysis was observed for T70P30 blends, which establishes the hemocompatibility of the material. In comparison, the results reveal the potential of the cytocompatible T70P30 scaffold for the fabrication of skin substitutes for tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1634-1644, 2019.


Assuntos
Resinas Compostas/química , Dimetilpolisiloxanos/química , Nanoestruturas/química , Poliuretanos/química , Pele Artificial , Alicerces Teciduais/química , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Humanos , Porosidade , Pele/metabolismo , Propriedades de Superfície , Engenharia Tecidual
14.
ACS Appl Mater Interfaces ; 10(20): 16977-16991, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29718653

RESUMO

Regeneration of full-thickness wounds without scar formation is a multifaceted process, which depends on in situ dynamic interactions between the tissue-engineered skin substitutes and a newly formed reparative tissue. However, the majority of the tissue-engineered skin substitutes used so far in full-thickness wound healing cannot mimic the natural extracellular matrix (ECM) complexity and thus are incapable of providing a suitable niche for endogenous tissue repair. Herein, we demonstrated a simple approach to fabricate porous hybrid ECM sponges (HEMS) using a placental ECM and silk fibroin for full-thickness wound healing. HEMS with retained cytokines/growth factors provided a noncytotoxic environment in vitro for human foreskin fibroblasts (HFFs), human epidermal keratinocytes (HEKs), and human amniotic membrane-derived stem cells to adhere, infiltrate, and proliferate. Interestingly, HEMS-conditioned media accelerated the migration of HFFs and HEKs owing to the presence of cytokines/growth factors. Also, the ex vivo chick chorioallantoic membrane assay of HEMS demonstrated its excellent vascularization potential by inducing and supporting blood vessels. Additionally, HEMS when subcutaneously implanted demonstrated no severe immune response to the host. Furthermore, HEMS implanted in full-thickness wounds in a rat model showed augmented healing progression with well-organized epidermal-dermal junctions via pronounced angiogenesis, accelerated migration of HFFs/HEKs, enhanced granulation tissue formation, and early re-epithelialization. Taken together, these findings show that porous HEMS ornamented with cytokines/growth factors having superior physicomechanical properties may be an appropriate skin substitute for full-thickness cutaneous wounds.


Assuntos
Cicatrização , Animais , Movimento Celular , Matriz Extracelular , Feminino , Humanos , Neovascularização Fisiológica , Placenta , Gravidez , Ratos , Seda , Pele
15.
J Mater Chem B ; 6(42): 6767-6780, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254693

RESUMO

Impaired wound healing is primarily associated with inadequate angiogenesis, repressed cell migration, deficient synthesis of extracellular matrix (ECM) component/growth factors, and altered inflammatory responses in the wound bed environment. Herein, we report a simple process for the fabrication of PCL nanofiber mats embedded with placental-derived bioactive molecules (PCL-sPEM) rich in growth factors for full-thickness cutaneous wound healing. The physicochemical attributes and biological composition of PCL-sPEM nanofiber mats delivered a nontoxic environment in vitro and significantly promoted the adhesion, infiltration, and proliferation of human fibroblasts/keratinocytes. Conditioned media extracted from PCL-sPEM nanofiber mats enhanced the migration potential of the cells (fibroblasts/keratinocytes) involved in wound healing due to the release of growth factors embedded in it. Further, PCL-sPEM nanofiber mats attracted, stimulated and supported vascularization as determined by the Chick Chorioallantoic Membrane (CAM) assay. Interestingly, critical skin wounds of rats treated with PCL-sPEM nanofiber mats facilitated improved wound closure with well-organized dermis and epidermis, which could be ascribed to prominent vascularization, augmented migration of human foreskin fibroblasts (HFFs) & human epidermal keratinocytes (HEKs), increased collagen synthesis and early re-epithelialization. Collectively, our results suggest that PCL-sPEM nanofiber mats embedded with growth factors could be a suitable matrix for treating critical full-thickness wounds.

16.
Mater Sci Eng C Mater Biol Appl ; 81: 133-143, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887957

RESUMO

Wound healing is a dynamic process wherein cells, and macromolecules work in consonance to facilitate tissue regeneration and restore tissue integrity. In the case of full-thickness (FT) wounds, healing requires additional support from native or synthetic matrices to aid tissue regeneration. In particular, a matrix with optimum hydrophilic-hydrophobic balance which will undergo adequate swelling as well as reduce bacterial adhesion has remained elusive. In the present study, polyurethane diol dispersion (PUD) and the anti-bacterial chitosan (Chn) were blended in different ratios which self-organized to form macroporous hydrogel scaffolds (MHS) at room temperature on drying. SEM and AFM micrographs revealed the macroporosity on top and fracture surfaces of the MHS. FTIR spectra revealed the intermolecular as well as intra-molecular hydrogen bonding interactions between the two polymers responsible for phase separation, which was also observed by micrographs of blend solutions during the drying process. The effect of phase separation on mechanical properties and in vitro degradation (hydrolytic, enzymatic and pH dependent) of MHS were studied and found to be suitable for wound healing. In vitro cytocompatibility was demonstrated by the proliferation of primary rat fibroblast cells on MHS. Selected MHS was subjected to in vivo FT wound healing study in Wistar rats and compared with an analogous polyurethane containing commercial dressing i.e. Tegaderm™. The MHS-treated wounds demonstrated accelerated healing with increased wound contraction, higher collagen synthesis, and vascularization in wound area compared to Tegaderm™. Thus, it is concluded that the developed MHS is a promising candidate for application as FT wound healing dressings.


Assuntos
Alginatos/química , Animais , Quitosana , Poliuretanos , Ratos , Ratos Wistar , Cicatrização
17.
ACS Biomater Sci Eng ; 3(8): 1738-1749, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33429655

RESUMO

Wound healing management is a major challenge for critical full-thickness skin wounds. Development of nanofibrous scaffolds with tunable wettability, degradation, and biocompatibility are highly desirable. Herein, we demonstrated synthesis of oleoyl chitosan (OC) by grafting monounsaturated fatty acid residue, C18 oleoyl chain, to the backbone of chitosan molecule and blending with gelatin to form the nanofiber mats. The physicochemical properties of the nanofiber mats revealed mechanical strength, moderate surface wettability, and suitable degradation rate. The nanofibrous mats showed excellent in vitro cytocompatibility with human amniotic membrane-derived stem cells (HAMSCs) in terms of enhanced adhesion and proliferation owing to biomimetic nanoarchitecture and chemical cues. Furthermore, the fabricated nanofiber was implanted with and without preseeded HAMSCs in the full-thickness wound to evaluate the skin wound healing efficacy in a rat model. Histological and immunohistochemical studies were conducted to evaluate the plausible changes of tissue architecture and expression of molecular markers involved in wound healing process. Both acellular and HAMSCs incorporated cellular nanofibers promoted wound contraction remarkably with superior skin tissue regeneration in terms of enhanced collagen synthesis, re-epithelialization and initiation of epithelial cells stratification compared to control group.

18.
J Mater Chem B ; 5(32): 6579-6592, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32264420

RESUMO

Nitrogen, sulfur, and phosphorous co-doped water-soluble carbon nanodots are synthesized from culinary waste onion peel powder (OPP) by a short microwave treatment. Onion Derived Carbon Nano Dots (OCND) that comprised hydrophilic group-decorated amorphous nano-dots exhibited bright, stable fluorescence at an excitation of 450 nm and emission wavelength at 520 nm along with a free radical scavenging property. The OCND exhibited excellent stability at different pH and UV exposure. Although extracted polyphenols degraded in the extract, interestingly it was shown to be cytocompatible and blood compatible as observed during cytotoxicity, fluorescence imaging of the cell and a hemolysis study. The present work not only focuses on the synthesis of OCND from the OPP extract but also provides an interesting fact that, even after the degradation of polyphenols in the extract, they are non-toxic to human cells (HFF & MG63) and RBCs. Moreover, OCND had no adverse effect on the migration rate of Human Foreskin-derived Fibroblasts (HFFs) as observed from a scratch assay. In addition to accelerating the migration rate of fibroblasts, the OCND altered intra- and extracellular reactive oxygen species (ROS) by enhancing the antioxidant mechanism of a fibroblast under oxidative stress. Further, OCND was observed to accelerate wound healing in a full thickness (FT) wound in a rat model for topical application, which can be attributed to its radical scavenging potential. In summary, this study leads to a new type of OCND synthesis route, which is inherently co-doped with phosphorous, sulfur and nitrogen and holds a great promise for a myriad of biological applications, including bio-imaging, free radical scavenging and wound healing.

19.
J Mater Chem B ; 4(4): 613-625, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32262943

RESUMO

Osteochondral injuries are challenging to repair due to their complex tissue anatomy and restricted self-repairing ability associated with a limited blood supply. Osteochondral tissue engineering is an important clinical aspect of the management and treatment of cartilage and underlying bone. In the present study, we fabricated human placenta-derived extracellular matrix sponges (PEMS) for repair of osteochondral tissue through a decellularization process. There were no significant cellular components present in the PEMS; hematoxylin & eosin/DAPI staining, DNA quantification and agarose gel electrophoresis were used to evaluate the extent of decellularization. Moreover, no significant alteration to the collagen and glycosaminoglycan (native extracellular matrix) content of the PEMS was observed. PEMS in vitro provided a non-cytotoxic environment rich in bioactive cues for human amniotic membrane-derived stem cells (HAMSCs) to proliferate in and differentiate into chondrogenic and osteogenic lineages under induction. Histological analysis at 28 days after the PEMS were subcutaneously implanted demonstrated no severe immune response in the host and supported the formation of blood vessels. To assess the osteochondral tissue repair ability of PEMS, cell-free PEMS (CFP) and cell-seeded PEMS (CSP) were implanted at osteochondral defect sites in a rabbit model. Histological scores indicated that osteochondral regeneration was more successful in the defects filled with CSP compared to those filled with CFP and empty defects (ED) after 60 days of implantation. In summary, a naturally derived biocompatible scaffold composed of extracellular matrix from human placenta has been successfully developed for osteochondral tissue engineering.

20.
J Mater Chem B ; 2(39): 6839-6847, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261880

RESUMO

Most of the nanoimaging tools like quantum dots and metallic nanoparticles are shown to have different levels of cytotoxicity via various mechanisms. However carbon nanodots (CNDs) are a new group of ultra small nano structures (average 4-6 nm) which is potential candidate of next generation optical imaging. Being carbonaceous in origin, CNDs possess excellent luminescence and photostability with significantly less cytotoxicity. In present study, we have synthesized carbon nano-dots from date molasses by microwave irradiation at ∼pH 11. The synthesized carbon nanodots were characterized using UV-Vis spectroscopy, fluorescence spectroscopy, TEM, XRD analysis, FTIR study and Zeta potential measurement. The average sizes of the dots were found to be 5-7 nm. A clear band emission was visible around 480 nm when an excitation beam of 415 nm was incident. For biological applicability, MTT assay and hemocompatibility studies were performed. The results exhibited the material to be highly cytocompatible within the application limit. Upon immediate exposure to CNDs, no significant changes to cellular surface morphology were observed via AFM imaging. Significant hemolysis or blood cell aggregation was not observed after incubation of CNDs with blood. After labelling with CNDs, MG-63 cells were found to be unbleached up to several hours even on exposure to light. We are reporting first time in this study the free radical scavenging property of CNDs in ex vivo and in vitro models. Antioxidant activity was measured ex vivo via potassium permanganate assay and DPPH assay. In vitro superoxide inhibition activity was measured both by spectroscopy and under microscope by NBT reduction assay. Hydroxyl free radical inhibition activity was measured via DCFH-DA Assay. The results were comparable with scavenging activity of standard antioxidant molecules (BHT and l-ascorbic acid). A novel assay for quantitative analysis of cellular oxidative stress was also proposed. Therefore, this material could be useful for long-term live cell imaging and cell tracking in a scaffold with minimal cytotoxicity and oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...