Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Expert Opin Drug Discov ; : 1-11, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884380

RESUMO

INTRODUCTION: Guanine nucleotide exchange factors (GEFs) regulate the activation of small GTPases (G proteins) of the Ras superfamily proteins controlling cellular functions. Ras superfamily proteins act as 'molecular switches' that are turned 'ON' by guanine exchange. There are five major groups of Ras family GTPases: Ras, Ran, Rho, Rab and Arf, with a variety of different GEFs regulating their GTP loading. GEFs have been implicated in various diseases including cancer. This makes GEFs attractive targets to modulate signaling networks controlled by small GTPases. AREAS COVERED: In this review, the roles and mechanisms of GEFs in malignancy are outlined. The mechanism of guanine exchange activity by GEFs on a small GTPase is illustrated. Then, some examples of GEFs that are significant in cancer are presented with a discussion on recent progress in therapeutic targeting efforts using a variety of approaches. EXPERT OPINION: Recently, GEFs have emerged as potential therapeutic targets for novel cancer drug development. Targeting small GTPases is challenging; thus, targeting their activation by GEFs is a promising strategy. Most GEF-targeted drugs are still in preclinical development. A deeper biological understanding of the underlying mechanisms of GEF activity and utilizing advanced technology are necessary to enhance drug discovery for GEFs in cancer.

2.
Clin Transl Med ; 13(12): e1513, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131168

RESUMO

BACKGROUND: The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac) necessitating the need for a more effective treatment strategy for this refractory disease. Previously, we have demonstrated that nuclear exporter protein exportin 1 (XPO1) is a valid therapeutic target in PDAC, and the selective inhibitor of nuclear export selinexor (Sel) synergistically enhances the efficacy of GemPac in pancreatic cancer cells, spheroids and patient-derived tumours, and had promising activity in a phase I study. METHODS: Here, we investigated the impact of selinexor-gemcitabine-nab-paclitaxel (Sel-GemPac) combination on LSL-KrasG12D/+ ; LSL-Trp53R172H/+ ; Pdx1-Cre (KPC) mouse model utilising digital spatial profiling (DSP) and single nuclear RNA sequencing (snRNAseq). RESULTS: Sel-GemPac synergistically inhibited the growth of the KPC tumour-derived cell line. The Sel-GemPac combination reduced the 2D colony formation and 3D spheroid formation. In the KPC mouse model, at a sub-maximum tolerated dose (sub-MTD) , Sel-GemPac enhanced the survival of treated mice compared to controls (p < .05). Immunohistochemical analysis of residual KPC tumours showed re-organisation of tumour stromal architecture, suppression of proliferation and nuclear retention of tumour suppressors, such as Forkhead Box O3a (FOXO3a). DSP revealed the downregulation of tumour promoting genes such as chitinase-like protein 3 (CHIL3/CHI3L3/YM1) and multiple pathways including phosphatidylinositol 3'-kinase-Akt (PI3K-AKT) signalling. The snRNAseq demonstrated a significant loss of cellular clusters in the Sel-GemPac-treated mice tumours including the CD44+ stem cell population. CONCLUSION: Taken together, these results demonstrate that the Sel-GemPac treatment caused broad perturbation of PDAC-supporting signalling networks in the KPC mouse model. HIGHLIGHTS: The majority of pancreatic ductal adenocarcinoma (PDAC) patients experience disease progression while on treatment with gemcitabine and nanoparticle albumin-bound (nab)-paclitaxel (GemPac). Exporter protein exportin 1 (XPO1) inhibitor selinexor (Sel) with GemPac synergistically inhibited the growth of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mouse derived cell line and enhanced the survival of mice. Digital spatial profiling shows that Sel-GemPac causes broad perturbation of PDAC-supporting signalling in the KPC model.


Assuntos
Carcinoma Ductal Pancreático , Combinação de Medicamentos , Proteína Exportina 1 , Neoplasias Pancreáticas , Animais , Camundongos , Modelos Animais de Doenças , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteína Exportina 1/antagonistas & inibidores , Gencitabina/administração & dosagem , Paclitaxel/administração & dosagem , Hidrazinas/administração & dosagem , Triazóis/administração & dosagem , Microambiente Tumoral , Análise da Expressão Gênica de Célula Única , Humanos
3.
Mol Cancer Ther ; 22(12): 1422-1433, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703579

RESUMO

KRASG12C inhibitors, such as sotorasib and adagrasib, have revolutionized cancer treatment for patients with KRASG12C-mutant tumors. However, patients receiving these agents as monotherapy often develop drug resistance. To address this issue, we evaluated the combination of the PAK4 inhibitor KPT9274 and KRASG12C inhibitors in preclinical models of pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). PAK4 is a hub molecule that links several major signaling pathways and is known for its tumorigenic role in mutant Ras-driven cancers. We found that cancer cells resistant to KRASG12C inhibitor were sensitive to KPT9274-induced growth inhibition. Furthermore, KPT9274 synergized with sotorasib and adagrasib to inhibit the growth of KRASG12C-mutant cancer cells and reduce their clonogenic potential. Mechanistically, this combination suppressed cell growth signaling and downregulated cell-cycle markers. In a PDAC cell line-derived xenograft (CDX) model, the combination of a suboptimal dose of KPT9274 with sotorasib significantly reduced the tumor burden (P= 0.002). Similarly, potent antitumor efficacy was observed in an NSCLC CDX model, in which KPT9274, given as maintenance therapy, prevented tumor relapse following the discontinuation of sotorasib treatment (P= 0.0001). Moreover, the combination of KPT9274 and sotorasib enhances survival. In conclusion, this is the first study to demonstrate that KRASG12C inhibitors can synergize with the PAK4 inhibitor KPT9274 and combining KRASG12C inhibitors with KPT9274 can lead to remarkably enhanced antitumor activity and survival benefits, providing a novel combination therapy for patients with cancer who do not respond or develop resistance to KRASG12C inhibitor treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma Ductal Pancreático , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases Ativadas por p21/genética , Neoplasias Pancreáticas
4.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187605

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with limited therapeutic options. Here we for the first time evaluated the role of regulator of chromosome condensation 1 (RCC1) in PDAC subsistence and drug resistance. RCC1 expression was found to be elevated in PDAC tissues in comparison with normal pancreatic tissues and was linked to poor prognosis. RCC1 silencing in a panel of PDAC cells by RNA interference and CRISPR-Cas9 resulted in reduced cellular proliferation in 2D and 3D cultures. RCC1 KD reduced migratory and clonogenic ability, enhanced apoptosis, and altered cell cycle distribution in human PDAC cells as well as cells isolated from the LSL-Kras G12D/+; LSL-Trp53 R172H/+ ;Pdx1-Cre (KPC) mouse tumors. Subcutaneous cell-derived xenografts show significantly attenuated growth of RCC1 KO tumors. Mechanistically, RCC1 knockdown resulted in disruption of subcellular Ran distribution indicating that stable nuclear Ran localization is critical for PDAC proliferation. Nuclear and cytosolic proteomic analysis revealed altered subcellular proteome in RCC1 KD KPC-tumor-derived cells. Altered cytoplasmic protein pathways include several metabolic pathways and PI3K-Akt signaling pathway. Pathways enriched in altered nuclear proteins include cell cycle, mitosis, and RNA regulation. RNA sequencing of RCC1 KO cells showed widespread transcriptional alterations. Upstream of RCC1, c-Myc activates the RCC1-Ran axis, and RCC1 KO enhances the sensitivity of PDAC cells to c-Myc inhibitors. Finally, RCC1 knockdown resulted in the sensitization of PDAC cells to Gemcitabine. Our results indicate that RCC1 is a potential therapeutic target in PDAC that warrants further clinical investigations.

5.
Front Oncol ; 12: 1013902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531078

RESUMO

KRAS mutations are among the most commonly occurring mutations in cancer. After being deemed undruggable for decades, KRAS G12C specific inhibitors showed that small molecule inhibitors can be developed against this notorious target. At the same time, there is still no agent that could target KRAS G12D which is the most common KRAS mutation and is found in the majority of KRAS-mutated pancreatic tumors. Nevertheless, significant progress is now being made in the G12D space with the development of several compounds that can bind to and inhibit KRAS G12D, most notably MRTX1133. Exciting advances in this field also include an immunotherapeutic approach that uses adoptive T-cell transfer to specifically target G12D in pancreatic cancer. In this mini-review, we discuss recent advances in KRAS G12D targeting and the potential for further clinical development of the various approaches.

6.
Cancer Metastasis Rev ; 40(3): 819-835, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499267

RESUMO

Kirsten Rat Sarcoma (KRAS) is a master oncogene involved in cellular proliferation and survival and is the most commonly mutated oncogene in all cancers. Activating KRAS mutations are present in over 90% of pancreatic ductal adenocarcinoma (PDAC) cases and are implicated in tumor initiation and progression. Although KRAS is a critical oncogene, and therefore an important therapeutic target, its therapeutic inhibition has been very challenging, and only recently specific mutant KRAS inhibitors have been discovered. In this review, we discuss the activation of KRAS signaling and the role of mutant KRAS in PDAC development. KRAS has long been considered undruggable, and many drug discovery efforts which focused on indirect targeting have been unsuccessful. We discuss the various efforts for therapeutic targeting of KRAS. Further, we explore the reasons behind these obstacles, novel successful approaches to target mutant KRAS including G12C mutation as well as the mechanisms of resistance.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Preparações Farmacêuticas , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Proliferação de Células , Humanos , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...