Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38352444

RESUMO

Amphetamine (AMPH) increases locomotor activities in animals, and the locomotor response to AMPH is further modulated by caloric deficits such as food deprivation and restriction. The increment in locomotor activity regulated by AMPH-caloric deficit concomitance can be further modulated by varying feeding schedules (e.g. acute and chronic food deprivation and acute feeding after chronic food deprivation). However, the effects of different feeding schedules on AMPH-induced locomotor activity are yet to be explicated. Here, we have explored the stimulatory responses of acutely administered d-amphetamine in locomotion under systematically varying feeding states (fed/sated and food deprivation) and schedules (chronic and acute) in zebrafish larvae. We used wild-type and transgenic[Tg(mnx1:GCaMP5)] zebrafish larvae and measured swimming activity and spinal motor neuron activity in vivo in real-time in time-elapsed and cumulative manner pre- and post-AMPH treatment. Our results showed that locomotion and motor neuron activity increased in both chronic and acute food deprivation post-AMPH treatment cumulatively. A steady increase in locomotion was observed in acute food-deprivation compared to an immediate abrupt increase in chronic food-deprivation state. The ad libitum-fed larvae exhibited a moderate increase both in locomotion and motor neuron activity. Conversely to all other caloric states, food-sated (acute feeding after chronic food deprivation) larvae moved moderately less and exhibited a mild decrease in motor neuron activity after AMPH treatment. These results point to the importance of the feeding schedule in modulating amphetamine's characteristic stimulatory response on behavior and motor neurons.

2.
Physiol Behav ; 264: 114144, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36889488

RESUMO

Psychostimulant drugs increase behavioral, cardiac and brain responses in humans and other animals. Acute food deprivation or chronic food restriction potentiates the stimulatory effects of abused drugs and increases the propensity for relapse to drug seeking in drug-experienced animals. The mechanisms by which hunger affects cardiac and behavioral activities are only beginning to be elucidated. Moreover, changes in motor neuron activities at the single neuron level induced by psychostimulants, and their modulation by food restriction, remain unknown. Here we investigated how food deprivation affects responses to d-amphetamine by measuring locomotor activity, cardiac output, and individual motor neuron activity in zebrafish larvae. We used wild-type larval zebrafish to record behavioral and cardiac responses and the larvae of Tg(mnx1:GCaMP5) transgenic zebrafish to record motor neuron responses. Physiological state gated responses to d-amphetamine. That is, d-amphetamine evoked significant increases in motor behavior (swimming distances), heart rate and motor neuron firing frequency in food-deprived but not fed zebrafish larvae. The results extend the finding that signals arising from food deprivation are a key potentiator of the drug responses induced by d-amphetamine to the zebrafish model. The larval zebrafish is an ideal model to further elucidate this interaction and identify key neuronal substrates that may increase vulnerability to drug reinforcement, drug-seeking and relapse.


Assuntos
Estimulantes do Sistema Nervoso Central , Dextroanfetamina , Animais , Humanos , Dextroanfetamina/farmacologia , Peixe-Zebra , Larva/fisiologia , Frequência Cardíaca , Estimulantes do Sistema Nervoso Central/farmacologia , Locomoção , Neurônios Motores , Fatores de Transcrição , Proteínas de Homeodomínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...