Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(12): 7261-7278, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38721764

RESUMO

RNA modifications, including N6-methyladenosine (m6A), critically modulate protein expression programs in a range of cellular processes. Although the transcriptomes of cells undergoing senescence are strongly regulated, the landscape and impact of m6A modifications during senescence are poorly understood. Here, we report a robust m6A modification of PTCHD4 mRNA, encoding Patched Domain-Containing Protein 4, in senescent cells. The METTL3/METTL14 complex was found to incorporate the m6A modification on PTCHD4 mRNA; addition of m6A rendered PTCHD4 mRNA more stable and increased PTCHD4 production. MeRIP RT-qPCR and eCLIP analyses were used to map this m6A modification to the last exon of PTCHD4 mRNA. Further investigation identified IGF2BP1, but not other m6A readers, as responsible for the stabilization and increased abundance of m6A-modified PTCHD4 mRNA. Silencing PTCHD4, a transmembrane protein, enhanced growth arrest and DNA damage in pre-senescent cells and sensitized them to senolysis and apoptosis. Our results indicate that m6A modification of PTCHD4 mRNA increases the production of PTCHD4, a protein associated with senescent cell survival, supporting the notion that regulating m6A modification on specific mRNAs could be exploited to eliminate senescent cells for therapeutic benefit.


Assuntos
Adenosina , Sobrevivência Celular , Senescência Celular , Metiltransferases , RNA Mensageiro , Proteínas de Ligação a RNA , Humanos , Senescência Celular/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Sobrevivência Celular/genética , Apoptose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dano ao DNA
2.
Cell Rep ; 43(3): 113881, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38442019

RESUMO

An intriguing effect of short-term caloric restriction (CR) is the expansion of certain stem cell populations, including muscle stem cells (satellite cells), which facilitate an accelerated regenerative program after injury. Here, we utilized the MetRSL274G (MetRS) transgenic mouse to identify liver-secreted plasminogen as a candidate for regulating satellite cell expansion during short-term CR. Knockdown of circulating plasminogen prevents satellite cell expansion during short-term CR. Furthermore, loss of the plasminogen receptor KT (Plg-RKT) is also sufficient to prevent CR-related satellite cell expansion, consistent with direct signaling of plasminogen through the plasminogen receptor Plg-RKT/ERK kinase to promote proliferation of satellite cells. Importantly, we are able to replicate many of these findings in human participants from the CALERIE trial. Our results demonstrate that CR enhances liver protein secretion of plasminogen, which signals directly to the muscle satellite cell through Plg-RKT to promote proliferation and subsequent muscle resilience during CR.


Assuntos
Plasminogênio , Receptores de Superfície Celular , Camundongos , Animais , Humanos , Plasminogênio/metabolismo , Receptores de Superfície Celular/metabolismo , Restrição Calórica , Fígado/metabolismo , Camundongos Transgênicos , Serina Proteases , Proliferação de Células , Músculos/metabolismo
3.
Aging Cell ; 22(12): e13963, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37823711

RESUMO

The lifespan extension induced by 40% caloric restriction (CR) in rodents is accompanied by postponement of disease, preservation of function, and increased stress resistance. Whether CR elicits the same physiological and molecular responses in humans remains mostly unexplored. In the CALERIE study, 12% CR for 2 years in healthy humans induced minor losses of muscle mass (leg lean mass) without changes of muscle strength, but mechanisms for muscle quality preservation remained unclear. We performed high-depth RNA-Seq (387-618 million paired reads) on human vastus lateralis muscle biopsies collected from the CALERIE participants at baseline, 12- and 24-month follow-up from the 90 CALERIE participants randomized to CR and "ad libitum" control. Using linear mixed effect model, we identified protein-coding genes and splicing variants whose expression was significantly changed in the CR group compared to controls, including genes related to proteostasis, circadian rhythm regulation, DNA repair, mitochondrial biogenesis, mRNA processing/splicing, FOXO3 metabolism, apoptosis, and inflammation. Changes in some of these biological pathways mediated part of the positive effect of CR on muscle quality. Differentially expressed splicing variants were associated with change in pathways shown to be affected by CR in model organisms. Two years of sustained CR in humans positively affected skeletal muscle quality, and impacted gene expression and splicing profiles of biological pathways affected by CR in model organisms, suggesting that attainable levels of CR in a lifestyle intervention can benefit muscle health in humans.


Assuntos
Restrição Calórica , Longevidade , Humanos , Longevidade/genética , Músculo Esquelético/metabolismo , Força Muscular
4.
bioRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37609272

RESUMO

Senescence is a state of indefinite cell cycle arrest associated with aging, cancer, and age-related diseases. Here, using label-based mass spectrometry, ribosome profiling and nanopore direct RNA sequencing, we explore the coordinated interaction of translational and transcriptional programs of human cellular senescence. We find that translational deregulation and a corresponding maladaptive integrated stress response (ISR) is a hallmark of senescence that desensitizes senescent cells to stress. We present evidence that senescent cells maintain high levels of eIF2α phosphorylation, typical of ISR activation, but translationally repress production of the stress response transcription factor 4 (ATF4) by ineffective bypass of the inhibitory upstream open reading frames. Surprisingly, ATF4 translation remains inhibited even after acute proteotoxic and amino acid starvation stressors, resulting in a highly diminished stress response. Furthermore, absent a response, stress augments the senescence secretory phenotype, thus intensifying a proinflammatory state that exacerbates disease. Our results reveal a novel mechanism that senescent cells exploit to evade an adaptive stress response and remain viable.

5.
Aging Cell ; 22(11): e13915, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37462262

RESUMO

Changes in the transcriptomes of human tissues with advancing age are poorly cataloged. Here, we sought to identify the coding and long noncoding RNAs present in cultured primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Using high-throughput RNA sequencing and a linear regression model, we identified 1437 coding RNAs (mRNAs) and 1177 linear and circular long noncoding (lncRNAs) that were differentially abundant as a function of age. Gene set enrichment analysis (GSEA) revealed select transcription factors implicated in coordinating the transcription of subsets of differentially abundant mRNAs, while long noncoding RNA enrichment analysis (LncSEA) identified RNA-binding proteins predicted to participate in the age-associated lncRNA profiles. In summary, we report age-associated changes in the global transcriptome, coding and noncoding, from healthy human skin fibroblasts and propose that these transcripts may serve as biomarkers and therapeutic targets in aging skin.


Assuntos
RNA Longo não Codificante , Transcriptoma , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Transcriptoma/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Biomarcadores/metabolismo , Perfilação da Expressão Gênica
6.
Circ Res ; 132(11): 1428-1443, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37154037

RESUMO

BACKGROUND: Few effective therapies exist to improve lower extremity muscle pathology and mobility loss due to peripheral artery disease (PAD), in part because mechanisms associated with functional impairment remain unclear. METHODS: To better understand mechanisms of muscle impairment in PAD, we performed in-depth transcriptomic and proteomic analyses on gastrocnemius muscle biopsies from 31 PAD participants (mean age, 69.9 years) and 29 age- and sex-matched non-PAD controls (mean age, 70.0 years) free of diabetes or limb-threatening ischemia. RESULTS: Transcriptomic and proteomic analyses suggested activation of hypoxia-compensatory mechanisms in PAD muscle, including inflammation, fibrosis, apoptosis, angiogenesis, unfolded protein response, and nerve and muscle repair. Stoichiometric proportions of mitochondrial respiratory proteins were aberrant in PAD compared to non-PAD, suggesting that respiratory proteins not in complete functional units are not removed by mitophagy, likely contributing to abnormal mitochondrial activity. Supporting this hypothesis, greater mitochondrial respiratory protein abundance was significantly associated with greater complex II and complex IV respiratory activity in non-PAD but not in PAD. Rate-limiting glycolytic enzymes, such as hexokinase and pyruvate kinase, were less abundant in muscle of people with PAD compared with non-PAD participants, suggesting diminished glucose metabolism. CONCLUSIONS: In PAD muscle, hypoxia induces accumulation of mitochondria respiratory proteins, reduced activity of rate-limiting glycolytic enzymes, and an enhanced integrated stress response that modulates protein translation. These mechanisms may serve as targets for disease modification.


Assuntos
Doença Arterial Periférica , Transcriptoma , Humanos , Idoso , Proteômica , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Hipóxia/metabolismo
7.
Nucleic Acids Res ; 50(22): 13026-13044, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36533518

RESUMO

The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo L , Desenvolvimento Muscular , Regiões Promotoras Genéticas , RNA Longo não Codificante , Transcrição Gênica , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transcrição Gênica/genética , Inativação Gênica , Transporte Proteico/genética
8.
Cell Rep ; 31(2): 107502, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294438

RESUMO

The diversity and heterogeneity within high-grade serous ovarian cancer (HGSC), which is the most lethal gynecologic malignancy, is not well understood. Here, we perform comprehensive multi-platform omics analyses, including integrated analysis, and immune monitoring on primary and metastatic sites from highly clinically annotated HGSC samples based on a laparoscopic triage algorithm from patients who underwent complete gross resection (R0) or received neoadjuvant chemotherapy (NACT) with excellent or poor response. We identify significant distinct molecular abnormalities and cellular changes and immune cell repertoire alterations between the groups, including a higher rate of NF1 copy number loss, and reduced chromothripsis-like patterns, higher levels of strong-binding neoantigens, and a higher number of infiltrated T cells in the R0 versus the NACT groups.


Assuntos
Cistadenocarcinoma Seroso/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Adulto , Feminino , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Metabolômica/métodos , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética
9.
Sci Rep ; 9(1): 1586, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733505

RESUMO

Ifosfamide and other oxazaphosphorines can result in hemorrhagic cystitis, a constellation of complications caused by acrolein metabolites. We previously showed that a single dose of IPSE (Interleukin-4-inducing principle from Schistosoma eggs), a schistosome-derived host modulatory protein, can ameliorate ifosfamide-related cystitis; however, the mechanisms underlying this urotoxicity and its prevention are not fully understood. To provide insights into IPSE's protective mechanism, we undertook transcriptional profiling of bladders from ifosfamide-treated mice, with or without pretreatment with IPSE or IPSE-NLS (a mutant of IPSE lacking nuclear localization sequence). Ifosfamide treatment upregulated a range of proinflammatory genes. The IL-1ß-TNFα-IL-6 proinflammatory cascade via NFκB and STAT3 pathways was identified as the key driver of inflammation. The NRF2-mediated oxidative stress response pathway, which regulates heme homoeostasis and expression of antioxidant enzymes, was highly activated. Anti-inflammatory cascades, namely Wnt, Hedgehog and PPAR pathways, were downregulated. IPSE drove significant downregulation of major proinflammatory pathways including the IL-1ß-TNFα-IL-6 pathways, interferon signaling, and reduction in oxidative stress. IPSE-NLS reduced inflammation but not oxidative stress. Taken together, we have identified signatures of acute-phase inflammation and oxidative stress in ifosfamide-injured bladder, which are reversed by pretreatment with IPSE. This work revealed several pathways that could be therapeutically targeted to prevent ifosfamide-induced hemorrhagic cystitis.


Assuntos
Antineoplásicos Alquilantes/efeitos adversos , Cistite/etiologia , Cistite/metabolismo , Proteínas do Ovo/imunologia , Proteínas de Helminto/imunologia , Hemorragia/etiologia , Hemorragia/metabolismo , Ifosfamida/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Cistite/diagnóstico , Citocinas/metabolismo , Perfilação da Expressão Gênica , Hemorragia/diagnóstico , Mediadores da Inflamação/metabolismo , Estresse Oxidativo , Transcriptoma
10.
Parasite Immunol ; 41(1): e12602, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30417508

RESUMO

AIMS: Mouse bladder wall injection with Schistosoma haematobium eggs has been used to overcome limitations in animal models of urogenital schistosomiasis. However, the effect of the absence of cercarial infection on immune responses to eggs in this model is unknown. We hypothesized that cercarial infection would alter local bladder and systemic immune responses to eggs in this model. METHODS AND RESULTS: Mice were infected or not infected with S haematobium cercariae, and then, their bladder walls injected with S haematobium eggs or vehicle 5 weeks following cercarial infection. Three weeks later, mice were bled, sacrificed, perfused and their bladders harvested. Parasitological parameters and gross bladder pathology were not changed in egg-injected bladders by cercarial exposure. Figure S1 shows no changes in either granulomas or fibrosis. The only bladder cytokine upregulated in egg-injected bladders by cercarial exposure (vs no exposure) was leptin. Cercarial exposure, compared to no exposure, resulted in increased serum, IL-1α, IL-13 and TGF-ß in bladder egg-injected mice. CONCLUSION: Cercarial exposure altered systemic responses of several cytokines in bladder egg-injected mice, but surprisingly, only modified leptin expression in bladder tissue. This suggests that depending on the specific application, cercarial exposure may not be strictly necessary to model local immune responses in the bladder wall egg injection mouse model of urogenital schistosomiasis.


Assuntos
Schistosoma haematobium/imunologia , Esquistossomose Urinária/imunologia , Bexiga Urinária/imunologia , Animais , Cercárias/imunologia , Cricetinae , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Granuloma/patologia , Camundongos Endogâmicos BALB C , Óvulo/imunologia , Esquistossomose Urinária/patologia
11.
Int J Parasitol ; 46(7): 447-52, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27025770

RESUMO

Analyses of whole organs from parasite-infected animals can reveal the entirety of the host tissue transcriptome, but conventional approaches make it difficult to dissect out the contributions of individual cellular subsets to observed gene expression. Computational deconvolution of gene expression data may be one solution to this problem. We tested this potential solution by deconvoluting whole bladder gene expression microarray data derived from a model of experimental urogenital schistosomiasis. A supervised technique was used to group B-cell and T-cell related genes based on their cell types, with a semi-supervised technique to calculate the proportions of urothelial cells. We demonstrate that the deconvolution technique was able to group genes into their correct cell types with good accuracy. A clustering-based methodology was also used to improve prediction. However, incorrectly predicted genes could not be discriminated using this methodology. The incorrect predictions were primarily IgH- and IgK-related genes. To our knowledge, this is the first application of computational deconvolution to complex, parasite-infected whole tissues. Other computational techniques such as neural networks may need to be used to improve prediction.


Assuntos
Biologia Computacional/métodos , Expressão Gênica , Schistosoma haematobium/genética , Esquistossomose Urinária/parasitologia , Bexiga Urinária/parasitologia , Urotélio/parasitologia , Algoritmos , Animais , Linfócitos B/parasitologia , Análise por Conglomerados , Imunoglobulinas/genética , Camundongos , Linfócitos T/parasitologia , Análise Serial de Tecidos/normas , Bexiga Urinária/citologia , Urotélio/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...