Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 135(13): 2277-87, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18539923

RESUMO

Members of the RYK/Derailed family have recently been shown to regulate axon guidance in both Drosophila and mammals by acting as Wnt receptors. Little is known about how the kinase activity-deficient RYKs transduce Wnt signals. Here, we show that the non-receptor Src family tyrosine kinases, SRC64B and SRC42A, are involved in WNT5-mediated signaling through Derailed in the Drosophila embryonic central nervous system. Analysis of animals lacking SRC64B and SRC42A reveals defects in commissure formation similar to those observed in Wnt5 and derailed mutants. Reductions in SRC64B expression levels suppress a Wnt5/derailed-dependent dominant gain-of-function phenotype, and increased levels of either SRC64B or SRC42A enhance Wnt5/derailed-mediated axon commissure switching. Derailed and SRC64B form a complex, which contains catalytically active SRC64B, the formation or stability of which requires SRC64B kinase activity. Furthermore, Derailed is phosphorylated in a SRC64B-dependent manner and coexpression of Derailed and SRC64B results in the activation of SRC64B. The mammalian orthologs of Derailed and SRC64B also form complexes, suggesting that Src roles in RYK signaling are conserved. Finally, we show that coexpression of WNT5 and Derailed has no apparent effect upon TCF/LEF-dependent transcription, suggesting that the WNT5/Derailed signaling pathway is unlikely to directly regulate canonical Wnt pathway targets. Together, these findings indicate that the Src family kinases play novel roles in WNT5/Derailed-mediated signaling.


Assuntos
Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas Wnt/metabolismo , Quinases da Família src/metabolismo , Animais , Axônios/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Heterozigoto , Mutação/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição TCF/metabolismo , Proteínas Wnt/genética , Quinases da Família src/genética
2.
Mech Dev ; 124(7-8): 617-30, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17543506

RESUMO

Duchenne muscular dystrophy is caused by mutations in the dystrophin gene and is characterized by progressive muscle wasting. The highly conserved dystrophin gene encodes a number of protein isoforms. The Dystrophin protein is part of a large protein assembly, the Dystrophin glycoprotein complex, which stabilizes the muscle membrane during contraction and acts as a scaffold for signaling molecules. How the absence of Dystrophin results in the onset of muscular dystrophy remains unclear. Here, we have used transgenic RNA interference to examine the roles of the Drosophila Dystrophin isoforms in muscle. We previously reported that one of the Drosophila Dystrophin orthologs, the DLP2 isoform, is not required to maintain muscle integrity, but plays a role in neuromuscular homeostasis by regulating neurotransmitter release. In this report, we show that reduction of all Dystrophin isoform expression levels in the musculature does not apparently affect myogenesis or muscle attachment, but results in progressive muscle degeneration in larvae and adult flies. We find that a recently identified Dystrophin isoform, Dp117, is expressed in the musculature and is required for muscle integrity. Muscle fibers with reduced levels of Dp117 display disorganized actin-myosin filaments and the cellular hallmarks of necrosis. Our results indicate the existence of at least two possibly separate roles of dystrophin in muscle, maintaining synaptic homeostasis and preserving the structural stability of the muscle.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Distrofina/metabolismo , Músculos/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Distrofina/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Músculos/ultraestrutura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...