Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 6(3): 423-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23745135

RESUMO

Protein structures are dynamic entities with a myriad of atomic fluctuations, side-chain rotations, and collective domain movements. Although the importance of these dynamics to proper functioning of proteins is emerging in the studies of many protein families, there is a lack of broad evidence for the critical role of protein dynamics in shaping the biological functions of a substantial fraction of residues for a large number of proteins in the human proteome. Here, we propose a novel dynamic flexibility index (dfi) to quantify the dynamic properties of individual residues in any protein and use it to assess the importance of protein dynamics in 100 human proteins. Our analyses involving functionally critical positions, disease-associated and putatively neutral population variations, and the rate of interspecific substitutions per residue produce concordant patterns at a proteome scale. They establish that the preservation of dynamic properties of residues in a protein structure is critical for maintaining the protein/biological function. Therefore, structural dynamics needs to become a major component of the analysis of protein function and evolution. Such analyses will be facilitated by the dfi, which will also enable the integrative use of structural dynamics with evolutionary conservation in genomic medicine as well as functional genomics investigations.

2.
Proteins ; 80(5): 1393-408, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22275068

RESUMO

Protein interacting with C kinase (PICK1) is well conserved throughout evolution and plays a critical role in synaptic plasticity by regulating the trafficking and posttranslational modification of its interacting proteins. PICK1 contains a single PSD95/DlgA/Zo-1 (PDZ) protein-protein interaction domain, which is promiscuous and shown to interact with over 60 proteins, most of which play roles in neuronal function. Several reports have suggested the role of PICK1 in disorders such as epilepsy, pain, brain trauma and stroke, drug abuse and dependence, schizophrenia and psychosis. Importantly, lead compounds that block PICK1 interactions are also now becoming available. Here, a new modeling approach was developed to investigate binding affinities of PDZ interactions. Using these methods, the binding affinities of all major PICK1 interacting proteins are reported and the effects of PICK1 mutations on these interactions are described. These modeling methods have important implications in defining the binding properties of proteins interacting with PICK1 as well as the general structural requirements of PDZ interactions. The study also provides modeling methods to support in the drug design of ligands for PDZ domains, which may further aid in development of the family of PDZ domains as a drug target.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Domínios PDZ , Sequência de Aminoácidos , Proteínas de Transporte/química , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Ligação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...