Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1193690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546265

RESUMO

Ligularia virgaurea and Ligularia sagitta are two species of poisonous plants with strong invasiveness in natural grasslands in China that have caused considerable harm to animal husbandry and the ecological environment. However, little is known about their suitable habitats and the key environmental factors affecting their distribution. Although some studies have reported the distributions of poisonous plants on the Qinghai-Tibet Plateau (QTP) and predicted their potential distributions at local scales in some regions under climate change, there have been few studies on the widespread distributions of L. virgaurea and L. sagitta. In this study, we recorded 276 and 118 occurrence points of L. virgaurea and L. sagitta on the QTP using GPS, and then used the MaxEnt model to predict the distribution of suitable habitats. Results showed that (1) under current climate conditions, L. virgaurea and L. sagitta are mainly distributed in southern Gansu, eastern Qinghai, northwestern Sichuan, eastern Tibet, and southwestern Yunnan, accounting for approximately 34.9% and 39.8% of the total area of the QTP, respectively; (2) the main environmental variables affecting the distribution of suitable habitats for L. virgaurea and L. sagitta are the Human Footprint Index (52.8%, 42.2%), elevation (11%, 4.4%), soil total nitrogen (18.9%, 4.2%), and precipitation seasonality (5.1%, 7.3%); and (3) in the future, in the 2050s and 2070s, the area of habitat of intermediate suitability for L. virgaurea will spread considerably in northwest Sichuan, while that of high suitability for L. sagitta will spread to eastern Tibet and western Sichuan.

2.
Animals (Basel) ; 13(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37048527

RESUMO

Acoustic communication plays a vital role in passing or sharing information between individuals. Identifying the biological meaning of vocal signals is crucial in understanding the survival strategies of animals. However, there are many challenges in identifying the true meaning of such signals. The plateau pika (Ochotona curzoniae) is a call-producing mammal endemic to the Qinghai-Tibet plateau (QTP) and considered a keystone species owing to its multiple benefits in alpine rangeland ecosystems. Previous studies have shown that plateau pikas emit alarm calls as part of their daily activities. However, only field observations have been used to identify these alarm calls of the plateau pika, with no attempts at using playback experiments. Here, we report the alarm calling of plateau pikas through field observations as well as simulated predator and playback experiments in the Eastern QTP from 2021 to 2022. We found that both female and male adults emitted alarm calls, the signals of which comprised only one syllable, with a duration of 0.1-0.3 s. There were no differences in the characteristics between the observed alarm calls and those made in response to the simulated predator. The duration of the alarm call response varied with altitude, with plateau pikas living at higher altitudes responding at shorter durations than those at lower altitudes.

3.
Animals (Basel) ; 13(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36830427

RESUMO

Endocrine cells can secrete a variety of gastrointestinal hormones that regulate gastrointestinal digestion and absorption, which, in turn, play an important role in animal growth, metabolism, and acclimation. The small alpine mammals, plateau zokor (Eospalax baileyi) and plateau pika (Ochotona curzoniae), live in a unique ecotope with cold, hypoxic environments and short plant-growing seasons, resulting in differential adaptive digestive strategies for foods. Studying the distribution pattern of endocrine cells in the gastrointestinal tract (GIT) of these two animals can lead to a better understanding of the survival strategies of animals in an alpine environment. In this study, we used histochemical and immunohistochemical methods to compare the distribution pattern of argyrophilic cells and the expression of 5-HT cells, Gas cells, and Glu cells in the GIT of the plateau zokor with those of the plateau pika. The results showed that these endocrine cells we studied were widely distributed in the gastrointestinal organs of both these small mammals, and their morphology and distribution location in the GIT were almost the same. However, there were significant differences in the distribution density of argyrophilic cells between different organs in the GIT. The distribution density of argyrophilic cells in the duodenum, jejunum, ileum, and rectum of plateau zokor was significantly lower than that of plateau pika (p < 0.05) and, in the cecum of plateau zokor, was significantly higher than that of plateau pika (p < 0.001). The positive expression of 5-HT cells in the corpus I, corpus II, and pylorus of the stomach, duodenum, ileum, and rectum of plateau zokor was significantly higher than that of plateau pika (p < 0.01). In addition, the positive expression of Glu cells in the cecum was significantly higher (p < 0.01) and in the duodenum and colon was significantly lower (p < 0.05) in the plateau zokor than in the plateau pika. We conclude that the distribution pattern of endocrine cells in the GIT is consistent with the respective animals' diets, with the plateau zokor feeding on high-fiber roots and plateau pika preferring to intake the aboveground parts of plants with lower fibers.

4.
Animals (Basel) ; 12(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139307

RESUMO

The morphological and histological traits of the gastrointestinal tract (GIT) enable the animal to perform some specific functions that enhance the species' adaptability to environments. The plateau zokor (Eospalax baileyi) is a subterranean rodent that mainly forages on plant roots in the Qinghai-Tibet Plateau, but little is known about the mechanism by which the plateau zokor digests roots that have high fiber contents. In this study, we used comparative anatomy methods to compare the morphological and histological traits of the GIT of both the plateau zokor and the plateau pika (Ochotona curzoniae), a small, fossorial lagomorph that forages aboveground plant parts, in order to clarify the traits of the plateau zokor's GIT and to understand its adaptations to high-fiber foods. The results showed that the foods which plateau zokors eat have a higher fiber content than those which the plateau pikas eat. The plateau zokor has a double-chambered and hemi-glandular stomach (the tubular glands are only in the gastric corpus II, and the gastric fundus is keratinized), whereas the plateau pika has a simple, wholly glandular stomach. The gross morphological indicators (organ index and relative length) of the GIT were significantly lower in the plateau zokor than they were in the plateau pika (p < 0.001). However, the thickness of the gastric corpus II mucosal layer and the gastric fundus muscle layer are significantly higher in the plateau zokor than they are in the plateau pika (p < 0.001), and the thickness of each layer of intestinal tissue is higher in the plateau zokor than it is in the plateau pika. Additionally, the small intestinal villi also are higher and wider in the plateau zokor than they are in the plateau pika. Our results suggest that instead of adapting to digest the high-fiber diet by expanding the size of the GIT, the plateau zokor has evolved a complex stomach and a well-developed gastrointestinal histological structure, and that these specialized GIT structures are consistent with an optimal energy-economy evolutionary adaptation strategy.

5.
Ecol Evol ; 8(24): 12773-12779, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619581

RESUMO

The Transbaikal zokor (Myospalax psilurus) is a dominant rodent distributed in the meadow steppe of Inner Mongolia in northern China. Due to long history of evolution in subterranean environment, the zokor has an adaptive behavior: sealing burrow entrances. When a burrow is damaged, exposed entrances appear, and within a relatively short time, the zokor would be active in sealing the entrances to reduce risks to its survival. In general, it is thought that zokors avoid light and wind, which is consistent with their behavior of sealing burrow entrances. However, direct evidence from field experimental research has been lacking. This study set up 68 field sampling points in a meadow steppe in Inner Mongolia from August to September, 2014 and used a wind-light isolator to study the effects of wind and light factors on zokor burrow entrance sealing behavior. The results showed that there were no significant correlations between wind or light factors and the frequency of zokor burrow entrance sealing. Therefore, wind and light factors are not direct factors associated with zokors actively sealing burrow entrances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA