Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981013

RESUMO

Bubble transportation and related flotation are ubiquitous phenomena in nature and industry. Various surfaces with distinct morphologies and specific wettability properties have been engineered by organisms in nature and by humans to facilitate the targeted movement of bubbles. However, existing methods predominantly rely on continuous surfaces, limiting the ability of bubbles to deviate from their path before reaching their intended destination. Therefore, directional transportation of bubbles using noncontiguous surfaces still remains a significant challenge. Inspired by water spiders' ability to capture bubbles underwater using their hydrophobic surface for survival, we propose a novel transport strategy that utilizes patterned superhydrophobic surfaces (PSHSs) and a superhydrophobic tweezer. This strategy is implemented by switching between the hood mode and puncture mode of the moving three-phase contact lines to load and unload the bubble. To quantitatively evaluate the loss ratio of the bubble during transportation, a simple and exquisite bubble-weighing apparatus is devised. Our findings indicate that circular PSHSs demonstrate superior bubble adhesion and achieve the highest bubble transport ratio of 95.1%. In order to validate the promising application of this novel method, we employ the computer numerical control (CNC) technology to facilitate the autonomous loading and precise transportation of underwater bubbles, as well as the blending and ionization of combustible gas bubbles with air bubbles at different volume ratios.

2.
Micromachines (Basel) ; 15(6)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38930722

RESUMO

This work reports a simple bubble generator for the high-speed generation of microbubbles with constant cumulative production. To achieve this, a gas-liquid co-flowing microfluidic device with a tiny capillary orifice as small as 5 µm is fabricated to produce monodisperse microbubbles. The diameter of the microbubbles can be adjusted precisely by tuning the input gas pressure and flow rate of the continuous liquid phase. The co-flowing structure ensures the uniformity of the generated microbubbles, and the surfactant in the liquid phase prevents coalescence of the collected microbubbles. The diameter coefficient of variation (CV) of the generated microbubbles can reach a minimum of 1.3%. Additionally, the relationship between microbubble diameter and the gas channel orifice is studied using the low Capillary number (Ca) and Weber number (We) of the liquid phase. Moreover, by maintaining a consistent gas input pressure, the CV of the cumulative microbubble volume can reach 3.6% regardless of the flow rate of the liquid phase. This method not only facilitates the generation of microbubbles with morphologic stability under variable flow conditions, but also ensures that the cumulative microbubble production over a certain period of time remains constant, which is important for the volume-dominated application of chromatographic analysis and the component analysis of natural gas.

3.
Lab Chip ; 24(12): 3064-3079, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38757493

RESUMO

Size-based particle filtration has become indispensable in numerous biomedical and environmental applications. In this study, bioinspired by the filter-feeding mechanism (lobe filtration) of manta rays, we designed a U-shaped biomimetic gill rake filter that combined lobe filtration and Dean flow to filter monodisperse suspensions, bi-disperse suspensions and yeast cells. Compared with other equipment using the inertial focusing technology, our equipment can perform high-throughput (up to 8 mL min-1) and high-efficiency filtration of particles (maximum filtration efficiencies of 96.08% and 97.14% for 10 and 15 µm monodisperse suspensions at the optimum flow rate of 6 mL min-1). The complex velocity field of the micro-fluidic flow within the filter is numerically simulated, and in combination with experiments, a threshold for the flow rate is identified. When the inlet flow rate exceeds the threshold value, the efficiency of particle filtration is increased rapidly. Afterwards, by analysing the filtration mechanism, we develop three novel filtration processes. The equilibrium positions of the particles and yeast cells in the main channel are close to the outer wall at high flow rate, which diminishes the likelihood of particles and yeast cells entering the side channel. This configuration establishes a self-cleaning mechanism, ensuring prolonged and efficient operation of the filter with high-throughput processing. Furthermore, the influence of the filter lobe angle and channel width on the filtration efficiency and outlet flow rate ratio are explored, and an optimisation plan is prepared.


Assuntos
Filtração , Filtração/instrumentação , Animais , Saccharomyces cerevisiae/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Tamanho da Partícula
4.
ACS Appl Mater Interfaces ; 16(11): 13756-13762, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38466899

RESUMO

Many biomimetic microfibers have been designed from spider silk to collect water efficiently from humid air as a result of its periodic spindle-knot structure, which enhances the direct movement and convergence of captured fog droplets. Here, a hydrodynamic flow-focusing microfluidic device with a theta-shaped tube is designed for the one-step fabrication of bioinspired microfibers with a spindle-knot structure for fog harvest. The morphology of the structured microfibers, including height, width, and spacing of spindle knots, can be adjusted readily by regulating the flow rate of specific phases. The production rate of these structured microfibers can reach 1100 cm/min. Moreover, the capture, transportation, and collection performance of fog droplets on various microfibers are investigated in a fog collection platform. It is demonstrated that our one-step microfluidic device presents a ready method for the fabrication of structured microfibers with spindle knots, which provide a significant facilitation on efficient fog capture and water collection.

5.
Opt Express ; 32(1): 287-300, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175056

RESUMO

Accurate pose measurement is crucial for parallel manipulators (PM). This study designs a novel integrated 6-DOF motion tracking system to achieve precise online pose measurement. However, the presence of geometric errors introduces imperfections in the accuracy of the measured pose. Based on the displacement information of six grating rulers, measurement pose is obtained through forward kinematics. By comparing the measurement results with the actual pose information captured by stereo vision, measurement errors can be obtained. A closed-loop vector-based kinematic model and an error model are established, and then the geometric errors are identified with the least-squares method. Finally, the geometric calibration experiments are conducted, and the results show that the measurement accuracy has significantly improved, with the average position error decreasing from 3.148 mm to 0.036 mm, and the average orientation error is decreased from 0.225° to 0.022°.

6.
Lab Chip ; 23(19): 4302-4312, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37691540

RESUMO

We present the development and application of a multilayer microfluidic lung chip designed to accurately replicate the human respiratory bronchi, providing an innovative platform for controlled particle deposition in the lung. By employing a quantitative control method of fluid velocity through the deformation of an elastic PDMS membrane, this platform mimics the passive breathing process in humans and allows for precise simulation of the respiration cycle. We utilized time-lapse photography of fluorescent particles in a water/glycerol solution to qualitatively observe fluid morphology in the channel, while a chip-aerosol exposure device combined with microscopy imaging was employed to visualise aerosol deposition. Both experimental and numerical simulation results showed that particle concentration decreased towards the distal generations of the lung, and that changes in breathing pattern significantly affected particle deposition trends. Furthermore, we found that increasing the residence time of particles in the channel facilitated deeper particle deposition, achievable by adjusting parameters such as breath-hold time, exhalation time, respiration cycle length, and tidal volume. The proposed microfluidic lung chip device has significant potential for future research in respiratory health and inhaled drug delivery, providing an efficient, cost-effective, and ethical alternative to traditional in vivo studies.


Assuntos
Pulmão , Respiração , Humanos , Aerossóis , Volume de Ventilação Pulmonar , Brônquios , Tamanho da Partícula , Modelos Biológicos
7.
Materials (Basel) ; 16(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37512215

RESUMO

The brittle failure of ceramic coatings limits their application in many fields. To address this issue, a novel armoured ceramic coating was developed to suppress brittle failure. First, an interconnected frame microstructure was micromachined onto the surface of a mild steel substrate using a nanosecond laser. Subsequently, a polymer-derived ceramic slurry was sprayed and sintered to obtain an armoured ceramic coating. The laser-micromachined burr-like microstructure of the substrate facilitated adhesion between the coating and the substrate. The results of the mechanical properties test showed that the armoured coating could withstand more than 20 cycles of water-cooled thermal shock at 600 °C, and the peeling area of the armoured coating was approximately three times less than that of the unarmoured coating under a normal load of 1471 N. The laboratory and field corrosion test results indicated that at high temperatures, the corrosion resistance of the armoured coating was comparable with that of the unarmoured coating and was approximately 10 times higher than that of the uncoated sample. The proposed method will aid in suppressing the brittle failure of ceramic coatings and broaden their scope of application in different fields.

8.
Langmuir ; 39(30): 10638-10650, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37366249

RESUMO

The wind-dispersed seeds can rotate and fall like small vehicles with the help of the wind to obtain a longer propagation distance. Inspired by this, we propose a novel bubble-driven three-bladed whirling-swimmer (WS) to travel in the fluid as a vehicle. Four types of WSs with blade folding angles (φ) ranging from 10 to 60° were designed, and their swimming performance was evaluated. Regardless of the WS shape, the velocity increases linearly with φ, while the angular frequency exhibits an asymptotic value. Further, both the St and rotational energy of the WS peak at 20° ≤ φ ≤ 30° for different WS shapes as well as the vertical force and the hydrodynamic torque were solved from a proposed mechanics model. This folding angle range is unexpectedly consistent with the coning angle during maple samaras' stable falling. The WS lift and drag forces greatly depend on the interaction between the leading-edge vortex and the hub vortex. The results showed that the WS-IV seems to have the highest performance. Our work may shed new light on developing unpowered wireless swimmers of high swimming performance to provide a new way for underwater information collection, information transmission, and enhanced mixing.

9.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36904571

RESUMO

This study investigated the dynamic characteristics of thermocouples by using double-pulse laser excitation for dynamic temperature calibration under extreme conditions. An experimental device was constructed for double-pulse laser calibration; the device uses a digital pulse delay trigger to precisely control the double-pulse laser to achieve sub-microsecond dual temperature excitation with adjustable time intervals. The time constants of thermocouples under single-pulse laser excitation and double-pulse laser excitation were evaluated. In addition, the variation trends of thermocouple time constants under different double-pulse laser time intervals were analyzed. The experimental results indicated that the time constant increases and then decreases with the decrease in the time interval of the double-pulse laser. A method for dynamic temperature calibration was established for the evaluation of the dynamic characteristics of temperature sensors.

10.
RSC Adv ; 13(14): 9773-9780, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36994089

RESUMO

Particle settling in stratified fluids is widespread in chemical and pharmaceutical processes, and how to effectively regulate the particle velocity is the key to optimizing the above process technology. In this study, the settling of individual particle in two stratified fluids, water-oil and water-PAAm was studied using the high-speed shadow imaging method. In the Newtonian stratified fluid of water-oil, the particle penetrates the liquid-liquid interface and forms unsteady entrained drops of different shapes, and the settling velocity becomes smaller. In contrast, in water-PAAm stratified fluids, the shear-thinning and viscoelasticity of the lower fluid will cause the entrained drops of the particle to appear a stable sharp cone shape, and the particle can thus obtain a smaller drag coefficient ( < 1) and a significantly enhanced settling velocity (U* > 1) compared to the uncovered PAAm solution (PAAm solution without overlayer oil). This study can provide a new path for the development of new particle velocity regulation techniques.

11.
Langmuir ; 39(2): 813-819, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36595715

RESUMO

Fibers with droplets encapsulated in them could build bridges between a 0D dispersed structure and a 1D continuous wire and thus provide optimal solutions requiring high surface-to-volume ratio and strong mechanical properties. However, current methods are mostly focusing on the architectures with the size of droplets smaller than that of fibers; the relatively thick barrier of fibers usually limits the rate of diffusion from inner droplets to the outer environment. Here, we report a hybrid method combining microfluidics and electrospinning to fabricate nanofibers with microdroplets encapsulated in them. Monodisperse microdroplets with controllable sizes from 36 to 95 µm are generated through microfluidic flow-focusing and split into a string of smaller droplets from 1 to 3 µm, respectively, during the electrospinning stretching. The size of encapsulated droplets could be tuned by controlling the flow rate ratio during the microfluidic process, and the shape of that could be varied by changing the viscosity of encapsulated solution. This marriage of microfluidics and electrospinning could be applied to produce a nanofiber-based moisture barrier and drug carrier, also providing efficient tools to study the under-electric-field stretching and splitting of droplets trapped in the polymer network.

12.
Micromachines (Basel) ; 13(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36557368

RESUMO

The phenomenon of near-wall particle settling in a stratified fluid is an emerging topic in the field of multiphase flow, and it is also widely found in nature and engineering applications. In stratified fluids, particle settling characteristics are affected by the physical and chemical properties of the upper and lower fluids, the particle size, the particle density, and the initial sedimentation conditions. In this study, the main objective is to determine the effect of liquid viscosity and particle density on the detaching process, and the trajectory and velocity of near-wall settling particles in stratified fluids. The inertia and velocity of the particle had a greater impact on the tail pinch-off model in low-viscosity lower fluids; that is, the lower the inertia and velocity, the more apparent the order between deep and shallow seal pinch-off. In comparison, in high-viscosity lower fluids, the tail pinch-off models of different inertia and velocity particles were similar. In terms of particle trajectory, the transverse motion of the particle in the low-viscosity lower fluid exhibited abrupt changes; that is, the particles moved away from the wall suddenly, whereas in the high-viscosity lower fluid, the transverse movement was gradual. Due to the existence of the wall, the transverse motion direction of the free settling particles in the stratified fluid, which is determined by the rotation direction of the particles, changed to a direction away from the wall regardless of the particle rotation direction. This transverse movement also caused the particle settling velocity to drop suddenly or its rising rate to decrease, this is because part of the energy was used for transverse motion and to increase the transverse velocity. In our study, the near-wall settling of particles in a stratified fluid mainly affected the particle trajectory; that is, forced movement away from the wall, thus changing the particle velocity. This characteristic provides a new approach to manipulate particles away from the wall.

13.
Micromachines (Basel) ; 13(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888927

RESUMO

Gas with ultrafine particle impaction on a solid surface is a unique case of curvilinear motion that can be widely used for the devices of surface coatings or instruments for particle size measurement. In this work, the Eulerian-Lagrangian method was applied to calculate the motion of microparticles in a micro impinging flow field with consideration of the interactions between particle to particle, particle to wall, and particle to fluid. The coupling computational fluid dynamics (CFD) with the discrete element method (DEM) was employed to investigate the different deposition patterns of microparticles. The vortex structure and two types of particle deposits ("halo" and "ring") have been discussed. The particle deposition characteristics are affected both by the flow Reynolds number (Re) and Stokes number (stk). Moreover, two particle deposition patterns have been categorized in terms of Re and stk. Finally, the characteristics and mechanism of particle deposits have been analyzed using the particle inertia, the process of impinging (particle rebound or no rebound), vortical structures, and the kinetic energy conversion in two-phase flow, etc.

14.
Micromachines (Basel) ; 12(1)2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33401507

RESUMO

Nanoparticle deposition in microchannel devices inducing contaminant clogging is a serious barrier to the application of micro-electro-mechanical systems (MEMS). For micro-scale gas flow fields with a high Knudsen number (Kn) in the microchannel, gas rarefaction and velocity slip cannot be ignored. Furthermore, the mechanism of nanoparticle transport and deposition in the microchannel is extremely complex. In this study, the compressible gas model and a second-order slip boundary condition have been applied to the Burnett equations to solve the flow field issue in a microchannel. Drag, Brownian, and thermophoretic forces are concerned in the motion equations of particles. A series of numerical simulations for various particle sizes, flow rates, and temperature gradients have been performed. Some important features such as reasons, efficiencies, and locations of particle deposition have been explored. The results indicate that the particle deposition efficiency varies more or less under the actions of forces such as Brownian force, thermophoretic force, and drag force. Nevertheless, different forces lead to different particle motions and deposition processes. Brownian or thermophoretic force causes particles to move closer to the wall or further away from it. The drag force influence of slip boundary conditions and gas rarefaction changes the particles' residential time in the channel. In order to find a way to decrease particle deposition on the microchannel surface, the deposition locations of different sizes of particles have been analyzed in detail under the action of thermophoretic force.

15.
Nanomaterials (Basel) ; 10(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899270

RESUMO

Micro-nano droplet collisions are fundamental phenomena in the applications of nanocoating, nano spray, and microfluidics. Detailed investigations of the process of the droplet collisions under higher Weber are still lacking when compared with previous research studies under a low Weber number below 120. Collision dynamics of unequal-sized micro-nano droplets are simulated by a coupled level-set and volume of fluid (CLSVOF) method with adaptive mesh refinement (AMR). The effects of the size ratio (from 0.25 to 0.75) and different initial collision velocities on the head-on collision process of two unequal-sized droplets at We = 210 are studied. Complex droplets will form the filament structure and break up with satellite droplets under higher Weber. The filament structure is easier to disengage from the complex droplet as the size ratio increases. The surface energy converting from kinetic energy increases with the size ratio, which promotes a better spreading effect. When two droplets keep the constant relative velocity, the motion tendency of the droplets after the collision is mainly dominated by the large droplet. On one hand, compared with binary equal-sized droplet collisions, a hole-like structure can be observed more clearly since the initial velocity of a large droplet decreases in the deformation process of binary unequal-sized droplets. On the other hand, the rim spreads outward as the initial velocity of the larger droplet increases, which leads to its thickening.

16.
Micromachines (Basel) ; 11(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751579

RESUMO

The demand for highly controllable droplet generation methods is very urgent in the medical, materials, and food industries. The droplet generation in a flow-focusing microfluidic device with external mechanical vibration, as a controllable droplet generation method, is experimentally studied. The effects of vibration frequency and acceleration amplitude on the droplet generation are characterized. The linear correlation between the droplet generation frequency and the external vibration frequency and the critical vibration amplitude corresponding to the imposing vibration frequency are observed. The droplet generation frequency with external mechanical vibration is affected by the natural generation frequency, vibration frequency, and vibration amplitude. The droplet generation frequency in a certain microfluidic device with external vibration is able to vary from the natural generation frequency to the imposed vibration frequency at different vibration conditions. The evolution of dispersed phase thread with vibration is remarkably different with the process without vibration. Distinct stages of expansion, shrinkage, and collapse are observed in the droplet formation with vibration, and the occurrence number of expansion-shrinkage process is relevant with the linear correlation coefficient.

17.
Molecules ; 21(12)2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27941688

RESUMO

A large number of molecules are usually required to model atomic walls in molecular dynamics simulations. A virtual-wall model is proposed in this study to describe fluid-wall molecular interactions, for reducing the computational time. The infinite repetition of unit cell structures within the atomic wall causes the periodicity of the force acting on a fluid molecule from the wall molecules. This force is first calculated and then stored in the memory. A fluid molecule appearing in the wall force field is subjected to the force from the wall molecules. The force can then be determined by the position of the molecule relative to the wall. This model avoids excessive calculations of fluid-wall interactions and reduces the computational time drastically. The time reduction is significant for small fluid density and channel height. The virtual-wall model is applied to Poiseuille and Couette flows, and to a flow in a channel with a rough surface. Results of the virtual and atomic wall simulations agree well with each other, thereby indicating the usefulness of the virtual-wall model. The appropriate bin size and cut-off radius in the virtual-wall model are also discussed.


Assuntos
Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...