Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 97: 156-165, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30678900

RESUMO

The porous Ti-Mo alloys were prepared by microwave sintering, and the effects of Mo contents on the pore structure, phase composition, compressive strength, elastic modulus, bending strength, corrosion resistance and cytocompatibility of porous Ti-Mo alloys were investigated. The results show that the porous Ti-Mo alloys are composed of α phase and ß phase, and the volume fraction of ß phase increases with increasing the Mo contents. The amount of Kirkendall pores distributed over the porous Ti-Mo alloys skeleton increases with increasing the Mo contents, which greatly increases the porosities and pore sizes of the porous Ti-Mo alloys. Correspondingly, all of the compressive strength, elastic modulus and bending strength of the porous Ti-Mo alloys decrease with increasing the Mo contents. The porous Ti-Mo alloys present excellent corrosion resistance in the Hank's solution due to the oxidation film of TiO2, MoO2 and MoO3 naturally formed on the surface, and the Mo contents have no obvious effect on the corrosion resistance. The cell viabilities of the porous Ti-Mo alloys are higher than 94%, indicating the porous Ti-Mo alloys possess favorable cytocompatibility. Moreover, the porous Ti-Mo alloys are beneficial to the spread, proliferation and differentiation of osteoblast-like cells, and the Mo contents have no significant effect on the cytocompatibility of the porous Ti-Mo alloys.


Assuntos
Ligas/química , Teste de Materiais/métodos , Molibdênio/química , Materiais Biocompatíveis , Adesão Celular , Células Cultivadas , Força Compressiva , Corrosão , Módulo de Elasticidade , Humanos , Microscopia Eletrônica de Varredura , Micro-Ondas , Osteoblastos , Porosidade , Propriedades de Superfície , Titânio/química
2.
Mater Sci Eng C Mater Biol Appl ; 46: 387-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25492002

RESUMO

Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant.


Assuntos
Ligas , Elasticidade , Micro-Ondas , Níquel/química , Porosidade , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...