Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; 36(23): e2309605, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331028

RESUMO

Microtubules and catalytic motor proteins underlie the microscale actuation of living materials, and they have been used in reconstituted systems to harness chemical energy to drive new states of organization of soft matter (e.g., liquid crystals (LCs)). Such materials, however, are fragile and challenging to translate to technological contexts. Rapid (sub-second) and reversible changes in the orientations of LCs at room temperature using reactions between gaseous hydrogen and oxygen that are catalyzed by Pd/Au surfaces are reported. Surface chemical analysis and computational chemistry studies confirm that dissociative adsorption of H2 on the Pd/Au films reduces preadsorbed O and generates 1 ML of adsorbed H, driving nitrile-containing LCs from a perpendicular to a planar orientation. Subsequent exposure to O2 leads to oxidation of the adsorbed H, reformation of adsorbed O on the Pd/Au surface, and a return of the LC to its initial orientation. The roles of surface composition and reaction kinetics in determining the LC dynamics are described along with a proof-of-concept demonstration of microactuation of beads. These results provide fresh ideas for utilizing chemical energy and catalysis to reversibly actuate functional LCs on the microscale.

2.
ACS Nano ; 17(22): 22620-22631, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37934462

RESUMO

Computational chemistry calculations are broadly useful for guiding the atom-scale design of hard-soft material interfaces including how molecular interactions of single-component liquid crystals (LCs) at inorganic surfaces lead to preferred orientations of the LC far from the surface. The majority of LCs, however, are not single-component phases but comprise of mixtures, such as a mixture of mesogens, added to provide additional functions such as responsiveness to the presence of targeted organic compounds (for chemical sensing). In such LC mixtures, little is understood about the near-surface composition and organization of molecules and how that organization propagates into the far-field LC orientation. Here, we address this broad question by using a multiscale computational approach that combines density functional theory (DFT)-based calculations and classical molecular dynamics (MD) simulations to predict the interfacial composition and organization of a binary LC mixture of 4'-cyano-4-biphenylcarbolxylic acid (CBCA) and 4'-n-pentyl-4-biphenylcarbonitrile (5CB) supported on anatase (101) titania surfaces. DFT calculations determine the surface composition and atomic-scale organization of CBCA and 5CB at the titania surface, and classical MD simulations build upon the DFT description to describe the evolution of the near-surface order into the bulk LC. A surprising finding is that the 5CB and CBCA molecules adopt orthogonal orientations at the anatase surface and that, above a threshold concentration of CBCA, this mixture of orientations evolves away from the surface to define a uniform far-field homeotropic orientation. These results demonstrate that molecular-level knowledge achieved through a combination of computational techniques permits the design and understanding of functional LC mixtures at interfaces.

3.
Proc Natl Acad Sci U S A ; 120(19): e2221740120, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126707

RESUMO

Biological systems convert chemical energy into mechanical work by using protein catalysts that assume kinetically controlled conformational states. Synthetic chemomechanical systems using chemical catalysis have been reported, but they are slow, require high temperatures to operate, or indirectly perform work by harnessing reaction products in liquids (e.g., heat or protons). Here, we introduce a bioinspired chemical strategy for gas-phase chemomechanical transduction that sequences the elementary steps of catalytic reactions on ultrathin (<10 nm) platinum sheets to generate surface stresses that directly drive microactuation (bending radii of 700 nm) at ambient conditions (T = 20 °C; Ptotal = 1 atm). When fueled by hydrogen gas and either oxygen or ozone gas, we show how kinetically controlled surface states of the catalyst can be exploited to achieve fast actuation (600 ms/cycle) at 20 °C. We also show that the approach can integrate photochemically controlled reactions and can be used to drive the reconfiguration of microhinges and complex origami- and kirigami-based microstructures.

4.
J Am Chem Soc ; 144(36): 16378-16388, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36047705

RESUMO

Liquid crystals (LCs), when supported on reactive surfaces, undergo changes in ordering that can propagate over distances of micrometers, thus providing a general and facile mechanism to amplify atomic-scale transformations on surfaces into the optical scale. While reactions on organic and metal substrates have been coupled to LC-ordering transitions, metal oxide substrates, which offer unique catalytic activities for reactions involving atmospherically important chemical species such as oxidized sulfur species, have not been explored. Here, we investigate this opportunity by designing LCs that contain 4'-cyanobiphenyl-4-carboxylic acid (CBCA) and respond to surface reactions triggered by parts-per-billion concentrations of SO2 gas on anatase (101) substrates. We used electronic structure calculations to predict that the carboxylic acid group of CBCA binds strongly to anatase (101) in a perpendicular orientation, a prediction that we validated in experiments in which CBCA (0.005 mol %) was doped into an LC (4'-n-pentyl-4-biphenylcarbonitrile). Both experiment and computational modeling further demonstrated that SO3-like species, produced by a surface-catalyzed reaction of SO2 with H2O on anatase (101), displace CBCA from the anatase surface, resulting in an orientational transition of the LC. Experiments also reveal the LC response to be highly selective to SO2 over other atmospheric chemical species (including H2O, NH3, H2S, and NO2), in agreement with our computational predictions for anatase (101) surfaces. Overall, we establish that the catalytic activities of metal oxide surfaces offer the basis of a new class of substrates that trigger LCs to undergo ordering transitions in response to chemical species of relevance to atmospheric chemistry.


Assuntos
Cristais Líquidos , Compostos de Bifenilo , Ácidos Carboxílicos , Catálise , Cristais Líquidos/química , Nitrilas , Óxidos de Enxofre , Titânio
5.
ACS Sens ; 7(9): 2545-2555, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35998611

RESUMO

We report how analysis of the spatial and temporal optical responses of liquid crystal (LC) films to targeted gases, when performed using a machine learning methodology, can advance the sensing of gas mixtures and provide important insights into the physical processes that underlie the sensor response. We develop the methodology using O3 and Cl2 mixtures (representative of an important class of analytes) and LCs supported on metal perchlorate-decorated surfaces as a model system. Although O3 and Cl2 both diffuse through LC films and undergo redox reactions with the supporting metal perchlorate surfaces to generate similar initial and final optical states of the LCs, we show that a three-dimensional convolutional neural network can extract feature information that is encoded in the spatiotemporal color patterns of the LCs to detect the presence of both O3 and Cl2 species in mixtures and to quantify their concentrations. Our analysis reveals that O3 detection is driven by the transition time over which the brightness of the LC changes, while Cl2 detection is driven by color fluctuations that develop late in the optical response of the LC. We also show that we can detect the presence of Cl2 even when the concentration of O3 is orders of magnitude greater than the Cl2 concentration. The proposed methodology is generalizable to a wide range of analytes, reactive surfaces, and LCs and has the potential to advance the design of portable LC monitoring devices (e.g., wearable devices) for analyzing gas mixtures using spatiotemporal color fluctuations.


Assuntos
Cristais Líquidos , Gases , Cristais Líquidos/química , Metais , Redes Neurais de Computação , Percloratos
6.
Mater Horiz ; 8(7): 2050-2056, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846482

RESUMO

The development of responsive soft materials with tailored functional properties based on the chemical reactivity of atomically precise inorganic interfaces has not been widely explored. In this communication, guided by first-principles calculations, we design bimetallic surfaces comprised of atomically thin Pd layers deposited onto Au that anchor nematic liquid crystalline phases of 4'-n-pentyl-4-biphenylcarbonitrile (5CB) and demonstrate that the chemical reactivity of these bimetallic surfaces towards Cl2 gas can be tuned by specification of the composition of the surface alloy. Specifically, we use underpotential deposition to prepare submonolayer to multilayers of Pd on Au and employ X-ray photoelectron and infrared spectroscopy to validate computational predictions that binding of 5CB depends strongly on the Pd coverage, with ∼0.1 monolayer (ML) of Pd sufficient to cause the liquid crystal (LC) to adopt a perpendicular binding mode. Computed heats of dissociative adsorption of Cl2 on PdAu alloy surfaces predict displacement of 5CB from these surfaces, a result that is also confirmed by experiments revealing that 1 ppm Cl2 triggers orientational transitions of 5CB. By decreasing the coverage of Pd on Au from 1.8 ± 0.2 ML to 0.09 ± 0.02 ML, the dynamic response of 5CB to 1 ppm Cl2 is accelerated 3X. Overall, these results demonstrate the promise of hybrid designs of responsive materials based on atomically precise interfaces formed between hard bimetallic surfaces and soft matter.

7.
Materials (Basel) ; 14(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668152

RESUMO

Soft matter that undergoes programmed macroscopic responses to molecular analytes has potential utility in a range of health and safety-related contexts. In this study, we report the design of a nematic liquid crystal (LC) composition that forms through dimerization of carboxylic acids and responds to the presence of vapors of organoamines by undergoing a visually distinct phase transition to an isotropic phase. Specifically, we screened mixtures of two carboxylic acids, 4-butylbenzoic acid and trans-4-pentylcyclohexanecarboxylic acid, and found select compositions that exhibited a nematic phase from 30.6 to 111.7 °C during heating and 110.6 to 3.1 °C during cooling. The metastable nematic phase formed at ambient temperatures was found to be long-lived (>5 days), thus enabling the use of the LC as a chemoresponsive optical material. By comparing experimental infrared (IR) spectra of the LC phase with vibrational frequencies calculated using density functional theory (DFT), we show that it is possible to distinguish between the presence of monomers, homodimers and heterodimers in the mixture, leading us to conclude that a one-to-one heterodimer is the dominant species within this LC composition. Further support for this conclusion is obtained by using differential scanning calorimetry. Exposure of the LC to 12 ppm triethylamine (TEA) triggers a phase transition to an isotropic phase, which we show by IR spectroscopy to be driven by an acid-base reaction, leading to the formation of ammonium carboxylate salts. We characterized the dynamics of the phase transition and found that it proceeds via a characteristic spatiotemporal pathway involving the nucleation, growth, and coalescence of isotropic domains, thus amplifying the atomic-scale acid-base reaction into an information-rich optical output. In contrast to TEA, we determined via both experiment and computation that neither hydrogen bonding donor or acceptor molecules, such as water, dimethyl methylphosphonate, ethylene oxide or formaldehyde, disrupt the heterodimers formed in the LC, hinting that the phase transition (including spatial-temporal characteristics of the pathway) induced in this class of hydrogen bonded LC may offer the basis of a facile and chemically selective way of reporting the presence of volatile amines. This proposal is supported by exploratory experiments in which we show that it is possible to trigger a phase transition in the LC by exposure to volatile amines emitted from rotting fish. Overall, these results provide new principles for the design of chemoresponsive soft matter based on hydrogen bonded LCs that may find use as the basis of low-cost visual indicators of chemical environments.

8.
J Am Chem Soc ; 141(40): 16003-16013, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508958

RESUMO

Elementary reaction steps, including adsorption and dissociation, of a range of molecular adsorbates on transition metal surfaces have been elucidated in the context of chemical catalysis. Here we leverage this knowledge to design liquid crystals (LCs) supported on ultrathin polycrystalline gold films (predominant crystallographic face is (111)) that are triggered to undergo orientational transitions by dissociative adsorption and dehydrogenation reactions involving chlorine and carboxylic acids, respectively, thus amplifying these atomic-scale surface processes in situ into macroscopic optical signals. We use electronic structure calculations to predict that 4'-n-pentyl-4-biphenylcarbonitrile (5CB), a room temperature nematic LC, does not bind to Au(111) in an orientation that changes upon dissociative adsorption of molecular chlorine, a result validated by experiments. In contrast, 4-cyano-4-biphenylcarboxylic acid (CBCA) is calculated to bind strongly to Au(111) in a perpendicular orientation via dehydrogenation of the carboxylic acid group, which we confirmed using polarization-modulation infrared reflection-absorption spectroscopy. A maximum coverage of 0.07 monolayer of CBCA on the gold surface is sufficient to cause a perpendicular orientation of the LC. Dissociative adsorption of Cl2 gas on the gold surface, resulting in 0.5 monolayer coverage of Cl, displaces CBCA from Au(111) and thus triggers a strikingly visible change in orientation of the LC. Infrared spectroscopy established the orientation of adsorbed CBCA to be parallel to the Cl covered surface, with the COOH plane perpendicular to the surface, as predicted by first-principles calculations. These results demonstrate the use of first-principles calculations and transition metal surfaces to design LCs that report in situ targeted atomic-scale surface processes.

9.
Angew Chem Int Ed Engl ; 57(31): 9665-9669, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29931784

RESUMO

Surface-supported liquid crystals (LCs) that exhibit orientational and thus optical responses upon exposure to ppb concentrations of Cl2 gas are reported. Computations identified Mn cations as candidate surface binding sites that undergo redox-triggered changes in the strength of binding to nitrogen-based LCs upon exposure to Cl2 gas. Guided by these predictions, µm-thick films of nitrile- or pyridine-containing LCs were prepared on surfaces decorated with Mn2+ binding sites as perchlorate salts. Following exposure to Cl2 , formation of Mn4+ (in the form of MnO2 microparticles) was confirmed and an accompanying change in the orientation and optical appearance of the supported LC films was measured. In unoptimized systems, the LC orientational transitions provided the sensitivity and response times needed for monitoring human exposure to Cl2 gas. The response was also selective to Cl2 over other oxidizing agents such as air or NO2 and other chemical targets such as organophosphonates.

10.
Adv Mater ; 30(27): e1706707, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29782666

RESUMO

The development of stimuli-responsive materials suitable for use in wearable sensors is a key unresolved challenge. Liquid crystals (LCs) are particularly promising, as they do not require power, are light-weight, and can be tuned to respond to a range of targeted chemical stimuli. Here, an advance is reported in the design of LCs for chemical sensors with the discovery of LCs that assume parallel orientations at free surfaces and yet retain their chemoresponsiveness. The resulting LC-based sensors are more sensitive and exhibit faster responses than previous LC sensor designs.

11.
Soft Matter ; 14(5): 797-805, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29308482

RESUMO

We report a combined theoretical and experimental effort to elucidate systematically for the first time the influence of anions of transition metal salt-decorated surfaces on the orientations of supported films of nematic liquid crystals (LCs) and adsorbate-induced orientational transitions of these LC films. Guided by computational chemistry predictions, we find that nitrate anions weaken the binding of 4'-n-pentyl-4-biphenylcarbonitrile (5CB) to transition metal cations, as compared to perchlorate salts, although binding is still sufficiently strong to induce homeotropic (perpendicular) orientations of 5CB. In addition, we find the orientations of the LC to be correlated across all metal cations investigated by a molecular anchoring energy density that is calculated as the product of the single-site binding energy and metal cation binding site density on the surface. The weaker single-site binding energy caused by nitrate also facilitates competitive binding of adsorbates to the metal cations, leading to more facile orientational transitions induced by adsorbates. Finally, our analysis suggests that nitrate anions recruit water via hydrogen bonding to the metal binding sites, modulating further the relative net binding energies of 5CB and adsorbates to surfaces decorated with metal nitrates. After accounting for the presence of water, we find a universal exponential relationship between the calculated displacement free energies and measured dynamic response of LCs to adsorbates for all metal salts studied, independent of the metal salt anion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...