Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Integr Cancer Ther ; 23: 15347354241263041, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39189615

RESUMO

Lung cancer is the most prevalent and lethal malignant tumor in China, primarily categorized into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for more than 80% of all lung cancer cases, with current treatments primarily consisting of surgery, chemotherapy, and targeted therapy. However, these treatments often come with various adverse effects and drug resistance issues, highlighting the urgent need for new NSCLC therapies. Traditional Chinese medicine serves as a natural treasury of medicinal compounds and an important avenue for discovering novel active compounds. Platycodin D (PD) is a triterpenoid saponin isolated from the roots of Platycodon, possessing various pharmacological properties. Nevertheless, the exact mechanism of PD's anti-lung cancer activity remains unclear. In this study, 3 lung cancer cell models, A549, NCI-H1299, and PC-9, were employed. After intervention with Platycodin-D, tumor cell proliferation and migration were assessed. Cell migration ability was assessed through transwell assays, while transcriptomics was employed to explore the mechanism of PD's anticancer activity. Bioinformatic analysis revealed significant enrichment of apoptosis and the TGFß pathway following PD intervention, as shown in gene expression heatmaps, where genes associated with cancer were significantly downregulated by PD intervention. Subsequently, we used immunofluorescent labeling of KI-67 to evaluate cell proliferation, flow cytometry to assess apoptosis, and Western blot to detect protein expression of TGFß and P-SMAD3. Immunofluorescence was also employed to investigate E-cadherin, vimentin, and N-cadherin. Finally, molecular docking and dynamic simulations were utilized to study the interaction between PD and TGFß proteins. The results of this study indicate that PD exhibits robust anti-lung cancer pharmacological activity, with its primary target being TGFß. PD may serve as a potential TGFß inhibitor and a candidate drug for NSCLC treatment.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Saponinas , Fator de Crescimento Transformador beta , Triterpenos , Humanos , Saponinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Triterpenos/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Movimento Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Depsídeos/farmacologia , Simulação de Acoplamento Molecular , Células A549 , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Platycodon/química
2.
Phytomedicine ; 132: 155791, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901284

RESUMO

BACKGROUND: Gastric mucosal injury is a chronic and progressive stomach disease that can be caused by nonsteroidal anti-inflammatory drugs (NSAIDs). Therefore, there is an urgent need to find safe and effective drugs to prevent gastric mucosal injury due to NSAIDs. Cinnamaldehyde (CA) is a bioactive compound extracted from the rhizome of cinnamon and has various pharmacological functions, including anti-inflammatory, analgesic, antiapoptotic, and antioxidant activities. However, the potential pharmacological effect of CA on gastric mucosal injury remains unknown. PURPOSE: The aim of this study was to investigate the protective effects of CA on aspirin-induced gastric mucosal injury and to explore its mechanism of action METHODS: The effect of CA on gastric mucosal injury was investigated in vitro and in vivo, in vitro mouse model of gastric mucosal injury induced by aspirin, in vitro model of GES-1 cell injury by aspirin and Erastin. The mechanism of action of CA was determined using Transcriptomics and bioinformatics. RESULTS: CA exerted its protective effects against gastric mucosal injury by modulating the downstream targets, including mTOR, GSK3ß, and NRF2, via the PI3K/AKT signaling pathway to inhibit autophagy, apoptosis, and ferroptosis in the gastric epithelial cells. Further cellular experiments confirmed that the PI3K/AKT pathway was a key target for CA against gastric mucosal injury. CONCLUSION: This study provides the first evidence of CA, an active compound in cinnamon, possessing therapeutic potential in preventing and treating gastric mucosal injury, with its mechanism involving the regulation of apoptosis, autophagy, and ferroptosis in gastric epithelial cells mediated by the PI3K/AKT signaling pathway.


Assuntos
Acroleína , Apoptose , Aspirina , Autofagia , Ferroptose , Mucosa Gástrica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Acroleína/análogos & derivados , Acroleína/farmacologia , Animais , Mucosa Gástrica/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Aspirina/farmacologia , Apoptose/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Transdução de Sinais/efeitos dos fármacos , Humanos , Linhagem Celular , Fator 2 Relacionado a NF-E2/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo
3.
Phytomedicine ; 121: 155078, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37734252

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with limited therapeutic strategies. Therefore, there is an urgent need to search for safe and effective drugs to treat this condition. Ophiopogonin D (OP-D), a steroidal saponin compound extracted from ophiopogon, possesses various pharmacological properties, including anti-inflammatory, antioxidant, and antitumor effects. However, the potential pharmacological effect of OP-D on pulmonary fibrosis remains unknown. PURPOSE: The aim of this study was to investigate whether OP-D can improve pulmonary fibrosis and to explore its mechanism of action. METHODS: The effect of OP-D on pulmonary fibrosis was investigated in vitro and in vivo using a mouse model of IPF induced by bleomycin and an in vitro model of human embryonic lung fibroblasts induced by transforming growth factor-ß1 (TGF-ß1). The mechanism of action of OP-D was determined using multi-omics techniques and bioinformatics. RESULTS: OP-D attenuated epithelial-mesenchymal transition and excessive deposition of extracellular matrix in the lungs, promoted the apoptosis of lung fibroblasts, and blocked the differentiation of lung fibroblasts into myofibroblasts. The multi-omics techniques and bioinformatics analysis revealed that OP-D blocked the AKT/GSK3ß pathway, and the combination of a PI3K/AKT inhibitor and OP-D was effective in alleviating pulmonary fibrosis. CONCLUSION: This study demonstrated for the first time that OP-D can reduce lung inflammation and fibrosis. OP-D is thus a potential new drug for the prevention and treatment of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Saponinas , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Multiômica , Fosfatidilinositol 3-Quinases/metabolismo , Pulmão/patologia , Saponinas/farmacologia , Saponinas/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fibroblastos , Bleomicina , Camundongos Endogâmicos C57BL
4.
Pharm Biol ; 61(1): 1234-1248, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37602379

RESUMO

CONTEXT: Xiaojianzhong decoction (XJZD), classically prescribed in Chinese medicine, has protective and healing effects on gastric mucosal injury. However, the exact mechanism behind this effect remains unclear. OBJECTIVE: To investigate the effect of XJZD on gastric mucosal injury and explore its underlying mechanisms. MATERIALS AND METHODS: C57BL/6 mice were randomized into six groups (n = 10): the control group receiving sterile water, the model (aspirin 300 mg/kg), the XJZD high-dose (12 g/kg), XJZD medium-dose (6 g/kg), XJZD low-dose (3 g/kg) and omeprazole (20 mg/kg) groups, by gavage daily for 14 days. The area of gastric mucosal injury, mucosal injury index and degree of histopathological damage were analysed. Gastric mucosal epithelial cell apoptosis was detected. Epithelial cell autophagy was observed. The expression levels of tight junction proteins and proteins related to apoptosis, autophagy and the pentose phosphate pathway were analysed. RESULTS: The results showed that after treatment with XJZD (12, 6 and 3 g/kg), the mucosal injury area was reduced (83.4%, 22.6% and 11.3%), the expression level of ZO-1 and occludin was up-regulated, the apoptosis rate of epithelial cells was reduced (40.8%, 25.4% and 8.7%), the expression of autophagy-related proteins LC3 and Beclin1 was decreased and the expression of p62 was increased, the PI3K/AKT/mTOR/ULK1(ser757) signalling pathway was activated, and the AMPK/ULK1(ser317) signalling pathway was inhibited. In addition, XJZD can antagonize the imbalance of redox homeostasis caused by aspirin and protect the gastric mucosa. DISCUSSION AND CONCLUSIONS: XJZD protects against aspirin-induced gastric mucosal injury, implying it to be a potential therapeutic agent.


Assuntos
Aspirina , Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Gastropatias , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Aspirina/toxicidade , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/patologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR , Gastropatias/induzido quimicamente , Gastropatias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Transdução de Sinais
5.
World J Gastrointest Oncol ; 15(3): 464-489, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37009319

RESUMO

BACKGROUND: Gastric precancerous lesions (GPL) precede the development of gastric cancer (GC). They are characterized by gastric mucosal intestinal metaplasia and dysplasia caused by various factors such as inflammation, bacterial infection, and injury. Abnormalities in autophagy and glycolysis affect GPL progression, and their effective regulation can aid in GPL treatment and GC prevention. Xiaojianzhong decoction (XJZ) is a classic compound for the treatment of digestive system diseases in ancient China which can inhibit the progression of GPL. However, its specific mechanism of action is still unclear. AIM: To investigate the therapeutic effects of XJZ decoction on a rat GPL model and the mechanisms underlying its effects on autophagy and glycolysis regulation in GPLs. METHODS: Wistar rats were randomly divided into six groups of five rats each and all groups except the control group were subjected to GPL model construction for 18 wk. The rats' body weight was monitored every 2 wk starting from the beginning of modeling. Gastric histopathology was examined using hematoxylin-eosin staining and Alcian blue-periodic acid-Schiff staining. Autophagy was observed using transmission electron microscopy. The expressions of autophagy, hypoxia, and glycolysis related proteins in gastric mucosa were detected using immunohistochemistry and immunofluorescence. The expressions of the following proteins in gastric tissues: B cell lymphoma/Leukemia-2 and adenovirus E1B19000 interacting protein 3 (Bnip-3), microtubule associated protein 1 light chain 3 (LC-3), moesin-like BCL2-interacting protein 1 (Beclin-1), phosphatidylinositol 3-kimase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), p53, AMP-activated protein kinase (AMPK), and Unc-51 like kinase 1 (ULK1) were detected using western blot. The relative expressions of autophagy, hypoxia, and glycolysis related mRNA in gastric tissues was detected using reverse transcription-polymerase chain reaction. RESULTS: Treatment with XJZ increased the rats' body weight and improved GPL-related histopathological manifestations. It also decreased autophagosome and autolysosome formation in gastric tissues and reduced Bnip-3, Beclin-1, and LC-3II expressions, resulting in inhibition of autophagy. Moreover, XJZ down-regulated glycolysis-related monocarboxylate transporter (MCT1), MCT4, and CD147 expressions. XJZ prevented the increase of autophagy level by decreasing gastric mucosal hypoxia, activating the PI3K/AKT/mTOR pathway, inhibiting the p53/AMPK pathway activation and ULK1 Ser-317 and Ser-555 phosphorylation. In addition, XJZ improved abnormal gastric mucosal glucose metabolism by ameliorating gastric mucosal hypoxia and inhibiting ULK1 expression. CONCLUSION: This study demonstrates that XJZ may inhibit autophagy and glycolysis in GPL gastric mucosal cells by improving gastric mucosal hypoxia and regulating PI3K/AKT/mTOR and p53/ AMPK/ULK1 signaling pathways, providing a feasible strategy for the GPL treatment.

6.
Biomed Pharmacother ; 155: 113631, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36122518

RESUMO

Gastric mucosal injury is the initial stage of the occurrence and development of gastric diseases. Oxidative stress and ferroptosis caused by the imbalance of redox and iron dynamics in gastric mucosal epithelial cells are present throughout the occurrence and development of gastric mucosal injury. Therefore, the inhibition of oxidative stress and ferroptosis is a potential target for the treatment of the gastric mucosal injury. Xiaojianzhong decoction (XJZ), which consists of six Chinese herbal medicines and extracts, is used for the treatment of diseases related to gastrointestinal mucosal injury; however, its specific mechanism of action has yet to be clarified. In this study, we clarified the protective effect of XJZ on gastric mucosa and revealed its underlying mechanism. We established a gastric mucosal injury model using aspirin and administered XJZ. Furthermore, we systematically evaluated the mucosal injury and examined the expression of genes related to oxidative stress, ferroptosis, and inflammation. The study found that XJZ significantly counteracted aspirin-induced gastric mucosal injury and inhibited oxidative stress and ferroptosis in mice. Upon examining SQSTM1/p62(p62)/Kelch-like ECH-associated protein 1 (Keap1)/Nuclear Factor erythroid 2-Related Factor 2 (Nrf2), a well-known signaling pathway involved in the regulation of oxidative stress and ferroptosis, we found that its activation was significantly inhibited by aspirin treatment and that this signaling pathway was activated after XJZ intervention. Our study suggests that XJZ may inhibit aspirin induced oxidative stress and ferroptosis via the p62/Keap1/Nrf2 signaling pathway, thereby attenuating gastric mucosal injury.


Assuntos
Ferroptose , Gastropatias , Animais , Camundongos , Aspirina/farmacologia , Aspirina/metabolismo , Mucosa Gástrica/metabolismo , Ferro/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
7.
Front Pharmacol ; 13: 859167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387334

RESUMO

An increasing body of evidence shows that macrophages play an important role in the pathogenesis of ulcerative colitis (UC). Macrophage polarization and changes in related signaling pathways are reported to have a protective effect on intestinal inflammation. The well-known Chinese medicine Wumeiwan (WMW) has been used to treat diarrhea, one of the main symptoms of colitis, for more than 2,000 years. Increasing evidence shows that WMW can inhibit intestinal inflammation and repair damaged intestinal mucosa, but its effector mechanisms are unknown. Therefore, we studied the prophylactic effects of WMW in dextran sulfate sodium (DSS)-induced UC and its effects on macrophage mechanisms and polarization. The results show that colitis was significantly alleviated in mice in the WMW group, and the secretion and expression of pro-inflammatory factors TNF-α, IL-1, and IL-6 were inhibited in the serum and colonic tissues of mice with WMW-treated colitis, whereas anti-inflammatory factors IL-10, Arg-1, and TGF-ß1 were increased. Subsequent studies found that WMW could inhibit M1 polarization and promote M2 polarization in colonic macrophages in DSS-induced colitis mice. Network pharmacology was used to predict potential targets and pathways, and further studies confirmed the related targets The results showed that WMW gradually inhibits the activation of the P38MAPK and NF-κB signaling pathways and further activates the STAT6 signaling pathway. In summary, WMW interferes with the p38MAPK, NF-κB and STAT6 signaling pathways to regulate M1/M2 polarization in macrophages, thereby protecting mice against DSS-induced colitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA