Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 15: 1390882, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689649

RESUMO

Background: Hepatocellular carcinoma (HCC) is a malignant tumor with high morbidity and mortality rate that seriously threatens human health. We aimed to investigate the expression, prognostic value, and immune cell infiltration of lactic acid metabolism-related genes (LAMRGs) in HCC using bioinformatics. Methods: The HCC database (The Cancer Genome Atlas-Liver Hepatocellular Carcinoma) was downloaded from the Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) between normal and tumor groups were identified. The LAMRGs were obtained from literature and GeneCards and MSigDB databases. Lactic acid metabolism-related differentially expressed genes (LAMRDEGs) in HCC were screened from the DEGs and LAMRGs. Functional enrichment analyses of the screened LAMRDEGs were further conducted using Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA). The genes were used in multivariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses to construct a prognostic model. Then, a protein-protein interaction network was constructed using STRING and CTD databases. Furthermore, the CIBERSORTx online database was used to assess the relationship between immune cell infiltration and hub genes. Results: Twenty-eight lactic acid metabolism-related differentially expressed genes (LAMRDEGs) were identified. The GO and KEGG analyses showed that the LAMRDEGs were related to the prognosis of HCC. The GSEA indicated that the LAMRDEGs were significantly enriched in tumor related pathways. In the multivariate Cox regression analysis, 14 key genes (E2F1, SERPINE1, GYS2, SPP1, PCK1, CCNB1, CYP2C9, IGFBP3, KDM8, RCAN1, ALPL, FBP1, NQO1, and LCAT) were found to be independent prognostic factors of HCC. Finally, the LASSO and Cox regression analyses showed that six key genes (SERPINE1, SPP1, CCNB1, CYP2C9, NQO1, and LCAT) were associated with HCC prognosis. Moreover, the correlation analyses revealed that the expression of the six key genes were associated with immune infiltrates of HCC. Conclusion: The LAMRDEGs can predict the prognosis and may be associated with immune cells infiltration in patients with HCC. These genes might be the promising biomarkers for the prognosis and treatment of HCC.

2.
Dev Cell ; 57(2): 246-259.e4, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35026163

RESUMO

N6-methyladenosine (m6A) RNA modification confers an essential layer of gene regulation in living organisms, including plants; yet, the underlying mechanisms of its deposition on specific target mRNAs involved in key plant developmental processes are so far unknown. Here, we show that a core component of the rice m6A methyltransferase complex, OsFIP37, is recruited by an RNA-binding protein, OsFIP37-associated protein 1 (OsFAP1), to mediate m6A RNA modification on an auxin biosynthesis gene, OsYUCCA3, during microsporogenesis. This stabilizes OsYUCCA3 mRNA and promotes local auxin biosynthesis in anthers during male meiosis, which is essential for meiotic division and subsequent pollen development in rice. Loss of function of OsFAP1 causes dissociation of OsFIP37 with OsYUCCA3 and the resulting abolished m6A deposition on OsYUCCA3. Our findings reveal that OsFAP1-dependent m6A deposition on OsYUCCA3 by OsFIP37 constitutes a hitherto unknown link between RNA modification and hormonal control of male meiosis in plant reproductive development.


Assuntos
Adenosina/análogos & derivados , Ácidos Indolacéticos/metabolismo , Meiose/genética , Adenosina/química , Adenosina/metabolismo , Flores/genética , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Oryza/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/metabolismo , Pólen/genética , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
3.
J Integr Plant Biol ; 62(1): 118-131, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31785071

RESUMO

In angiosperms, floral transition is a key developmental transition from the vegetative to reproductive growth, and requires precise regulation to maximize the reproductive success. A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues. Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition. Among various phytohormones, gibberellin (GA) plays a major role in affecting flowering in the model plant Arabidopsis thaliana. The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis. In this review, we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis, and discuss its possible link with other phytohormone pathways during the floral transition.


Assuntos
Arabidopsis/metabolismo , Flores/fisiologia , Giberelinas/metabolismo , Transdução de Sinais , Modelos Biológicos , Reguladores de Crescimento de Plantas/metabolismo
4.
Dev Cell ; 50(1): 90-101.e3, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31178399

RESUMO

Plants exhibit different flowering behaviors in response to variable photoperiods across a wide geographical range. Here, we identify MYC3, a bHLH transcription factor, and its cis-element form the long-sought regulatory module responsible for cis-regulatory changes at the florigen gene FLOWERING LOCUS T (FT) that mediate natural variation in photoperiodic flowering responses in Arabidopsis. MYC3 is stabilized by DELLAs in the gibberellin pathway to suppress FT through binding the ACGGAT motif and antagonizing CONSTANS (CO) activation. Changing photoperiods modulate the relative abundance of MYC3 and CO, thus determining either of them as the predominant regulator for FT expression under different day lengths. Cis-regulatory changes in the MYC3 binding site at FT are associated with natural variation in day-length requirement for flowering in Arabidopsis accessions. Our findings reveal that environmental and developmental signals converge at MYC3 suppression of FT, an elementary event underlying natural variation in photoperiodic flowering responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bases de Dados Genéticas , Flores/genética , Flores/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Dev Cell ; 45(3): 406-416.e3, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656930

RESUMO

DNA methylation on N6-adenine (6mA) has recently been found to be a potentially epigenetic mark in several unicellular and multicellular eukaryotes. However, its distribution patterns and potential functions in land plants, which are primary producers for most ecosystems, remain largely unknown. Here we report global profiling of 6mA sites at single-nucleotide resolution in the genome of Arabidopsis thaliana at different developmental stages using single-molecule real-time sequencing. 6mA sites are widely distributed across the Arabidopsis genome and enriched over the pericentromeric heterochromatin regions. 6mA occurs more frequently in gene bodies than intergenic regions. Analysis of 6mA methylomes and RNA sequencing data demonstrates that 6mA frequency positively correlates with the gene expression level and the transition from vegetative to reproductive growth in Arabidopsis. Our results uncover 6mA as a DNA mark associated with actively expressed genes in Arabidopsis, suggesting that 6mA serves as a hitherto unknown epigenetic mark in land plants.


Assuntos
Adenina/análogos & derivados , Adenina/química , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/crescimento & desenvolvimento , Montagem e Desmontagem da Cromatina , Genoma de Planta
6.
Mol Plant ; 10(11): 1387-1399, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28965832

RESUMO

5-Methylcytosine (m5C) is a well-characterized DNA modification, and is also predominantly reported in abundant non-coding RNAs in both prokaryotes and eukaryotes. However, the distribution and biological functions of m5C in plant mRNAs remain largely unknown. Here, we report transcriptome-wide profiling of RNA m5C in Arabidopsis thaliana by applying m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). LC-MS/MS and dot blot analyses reveal a dynamic pattern of m5C mRNA modification in various tissues and at different developmental stages. m5C-RIP-seq analysis identified 6045 m5C peaks in 4465 expressed genes in young seedlings. We found that m5C is enriched in coding sequences with two peaks located immediately after start codons and before stop codons, and is associated with mRNAs with low translation activity. We further demonstrated that an RNA (cytosine-5)-methyltransferase, tRNA-specific methyltransferase 4B (TRM4B), exhibits m5C RNA methyltransferase activity. Mutations in TRM4B display defects in root development and decreased m5C peaks. TRM4B affects the transcript levels of the genes involved in root development, which is positively correlated with their mRNA stability and m5C levels. Our results suggest that m5C in mRNA is a new epitranscriptome marker inArabidopsis, and that regulation of this modification is an integral part of gene regulatory networks underlying plant development.


Assuntos
5-Metilcitosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Metilação , Raízes de Plantas/metabolismo , RNA Mensageiro/genética
7.
Plant Cell ; 29(3): 491-507, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28254780

RESUMO

Flowering time is a critical agronomic trait that determines successful seed production and adaptation of crop plants. Photoperiodic control of this process in flowering plants is mediated by the long-distance mobile signal called florigen partly encoded by FLOWERING LOCUS T (FT) in Arabidopsis thaliana and its orthologs in other plant species. Despite the progress in understanding FT transport in the dicot model Arabidopsis, the mechanisms of florigen transport in monocots, which provide most of the biomass in agriculture, are unknown. Here, we show that rice FT-INTERACTING PROTEIN1 (OsFTIP1), a member of the family of multiple C2 domain and transmembrane region proteins (MCTPs) and the closest ortholog of Arabidopsis FTIP1, is required for export of RICE FLOWERING LOCUS T 1 (RFT1) from companion cells to sieve elements. This affects RFT1 movement to the shoot apical meristem and its regulation of rice flowering time under long days. We further reveal that a ubiquitin-like domain kinase γ4, OsUbDKγ4, interacts with OsFTIP1 and modulates its degradation in leaves through the 26S proteasome, which in turn affects RFT1 transport to the shoot apical meristem. Thus, dynamic modulation of OsFTIP1 abundance in leaves by a negative regulator OsUbDKγ4 is integral to the role of OsFTIP1 in mediating RFT1 transport in rice and provides key evidence for a conserved role of FTIP1-like MCTPs in mediating florigen transport in flowering plants.


Assuntos
Florígeno/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Brotos de Planta/genética , Brotos de Planta/metabolismo , Transporte Proteico/genética , Transporte Proteico/fisiologia
8.
New Phytol ; 206(1): 220-230, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25640859

RESUMO

Arabidopsis trichome formation is an excellent model for studying various aspects of plant cell development and cell differentiation. Our previous works have demonstrated that several C2H2 zinc finger proteins, including GIS, GIS2, ZFP5, ZFP6 and ZFP8, control trichome cell development through GA and cytokinin signalling in Arabidopsis. We identified a novel C2H2 zinc finger protein, GLABROUS INFLORESCENCE STEMS 3 (GIS3), which is a key factor in regulating trichome development in Arabidopsis. In comparison with wild-type plants, loss-of-function of GIS3 mutants exhibited a significantly decreased number of trichomes in cauline leaves, lateral branches, sepals of flowers, and main stems. Overexpression of GIS3 resulted in increased trichome densities in sepal, cauline leaves, lateral branches, main inflorescence stems and in the appearance of ectopic trichomes on carpels. The molecular and genetic analyses show that GIS3 acts upstream of GIS, GIS2, ZFP8 and the key trichome initiation factors, GL1 and GL3. Steroid-inducible gene expression analyses and chromatin immunoprecipitation (ChIP) experiments suggest that GIS and GIS2 are the direct target genes of GIS3.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Citocininas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Giberelinas/metabolismo , Inflorescência/genética , Inflorescência/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/metabolismo , Tricomas/genética , Tricomas/crescimento & desenvolvimento , Dedos de Zinco
9.
Dev Cell ; 30(4): 437-48, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25132385

RESUMO

Plants adjust the timing of the transition to flowering to ensure their reproductive success in changing environments. Temperature and light are major environmental signals that affect flowering time through converging on the transcriptional regulation of FLOWERING LOCUS T (FT) encoding the florigen in Arabidopsis. Here, we show that a MYB transcription factor EARLY FLOWERING MYB PROTEIN (EFM) plays an important role in directly repressing FT expression in the leaf vasculature. EFM mediates the effect of ambient temperature on flowering and is directly promoted by another major FT repressor, SHORT VEGETATIVE PHASE. EFM interacts with an H3K36me2 demethylase JMJ30, which forms a negative feedback regulatory loop with the light-responsive circadian clock, to specifically demethylate an active mark H3K36me2 at FT. Our results suggest that EFM is an important convergence point that mediates plant responses to temperature and light to determine the timing of reproduction.


Assuntos
Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos , Temperatura Baixa , Retroalimentação Fisiológica , Florígeno/metabolismo , Flores/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Luz , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...