Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med J (Engl) ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721809

RESUMO

BACKGROUND: The sirtuin family is well recognized for its crucial involvement in various cellular processes. Nevertheless, studies on its role in the human endometrium are limited. This study aimed to explore the expression and localization of the sirtuin family in the human endometrium, focusing on sirtuin 3 (SIRT3) and its potential role in the oxidative imbalance of the endometrium in polycystic ovary syndrome (PCOS). METHODS: Endometrial specimens were collected from both patients with PCOS and controls undergoing hysteroscopy at the Center for Reproductive Medicine, Peking University Third Hospital, from July to August 2015 and used for cell culture. The protective effects of SIRT3 were investigated, and the mechanism of SIRT3 in improving endometrial receptivity of patients with PCOS was determined using various techniques, including cellular bioenergetic analysis, small interfering ribonucleic acid (siRNA) silencing, real-time quantitative polymerase chain reaction, Western blot, immunofluorescence, immunohistochemistry, and flow cytometry analysis. RESULTS: The sirtuin family was widely expressed in the human endometrium, with SIRT3 showing a significant increase in expression in patients with PCOS compared with controls (P <0.05), as confirmed by protein and gene assays. Concurrently, endometrial antioxidant levels were elevated, while mitochondrial respiratory capacity was reduced, in patients with PCOS (P <0.05). An endometrial oxidative stress (OS) model revealed that the downregulation of SIRT3 impaired the growth and proliferation status of endometrial cells and reduced their receptivity to day 4 mouse embryos. The results suggested that SIRT3 might be crucial in maintaining normal cellular state by regulating antioxidants, cell proliferation, and apoptosis, thereby contributing to enhanced endometrial receptivity. CONCLUSIONS: Our findings proposed a significant role of SIRT3 in improving endometrial receptivity in patients with PCOS by alleviating OS and regulating the balance between cell proliferation and apoptosis. Therefore, SIRT3 could be a promising target for predicting and improving endometrial receptivity in this patient population.

2.
Adv Mater ; : e2404297, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734972

RESUMO

Zwitterionic polymers have emerged as an important class of biomaterials to construct wound dressings and antifouling coatings over the past decade due to their excellent hydrophilicity. However, all the reported zwitterionic polymers as wound dressings are nondegradable because of noncleavable carbon─carbon bonding backbones, and must be removed periodically after treatment to avoid hypoxia in the wound, thus leading to potential secondary injury. In this work, a biodegradable polyzwitterion patch is fabricated for the first time by ring-opening polymerization of carboxybetaine dithiolane (CBDS), which is self-crosslinked via inter-amide hydrogen bonds and zwitterionic dipole-dipole interactions on the side chains. The unprecedented polyCBDS (PCBDS) patch demonstrates enough ductility owing to the intermolecular physical interactions to fully cover irregular wounds, also showing excellent biodegradability and antifouling performance resulted from the existence of disulfide bonds and carboxybetaine groups. Besides, the PCBDS degradation-induced released CBDS owns potent antioxidant and antibacterial activities. This PCBDS patch is used as a diabetic wound dressing, inhibiting bacterial adhesion on the external surface, and its degradation products can exactly kill bacteria and scavenge excessive reactive oxygen species (ROS) at the wound site to regulate local microenvironment, including regulation of cytokine express and macrophage polarization, accelerating infected diabetic wound repair, and also avoiding the potential secondary injury.

3.
FASEB J ; 38(5): e23436, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430461

RESUMO

Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-ß1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-ß1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-ß1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-ß1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-ß1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.


Assuntos
Adenina/análogos & derivados , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Obstrução Ureteral/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Desmetilação , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
4.
Mater Horiz ; 11(11): 2628-2642, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501271

RESUMO

The fabrication of stretchable ionic conductors with low hysteresis and anti-freezing properties to enhance the durability and reliability of flexible electronics even at low temperatures remains an unmet challenge. Here, we report a facile strategy to fabricate low hysteresis, high stretchability, self-adhesion and anti-freezing zwitterionic supramolecular polymer ion-conductive elastomers (ICEs) by photoinitiated polymerization of aqueous precursor solutions containing a newly designed zwitterionic monomer carboxybetaine ureido acrylate (CBUIA) followed by solvent evaporation. The resultant poly(carboxybetaine ureido acrylate) (PCBUIA) ICEs are highly stretchable and self-adhesive owing to the presence of strong hydrogen bonds between ureido groups and dipole-dipole interactions of zwitterions. The zwitterion groups on the polymer side chains and loaded-lithium chloride endow PCBUIA ICEs with excellent anti-freezing properties, demonstrating mechanical flexibility and ionic transport properties even at a low temperature (-20 °C). Remarkably, the PCBUIA ICEs demonstrate a low hysteresis (≈10%) during cyclic mechanical loading-unloading (≤500%), and are successfully applied as wearable strain sensors and triboelectric nanogenerators (TENGs) for energy harvesting and human motion monitoring. In addition, the PCBUIA ICE-based TENG was used as a wireless sensing terminal for Internet of Things smart devices to enable wireless sensing of finger motion state detection.

5.
Cell Death Discov ; 9(1): 82, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878898

RESUMO

Acute kidney injury (AKI) is a common clinical dysfunction with complicated pathophysiology and limited therapeutic methods. Renal tubular injury and the following regeneration process play a vital role in the course of AKI, but the underlining molecular mechanism remains unclear. In this study, network-based analysis of online transcriptional data of human kidney found that KLF10 was closely related to renal function, tubular injury and regeneration in various renal diseases. Three classical mouse models confirmed the downregulation of KLF10 in AKI and its correlation with tubular regeneration and AKI outcome. The 3D renal tubular model in vitro and fluorescent visualization system of cellular proliferation were constructed to show that KLF10 declined in survived cells but increased during tubular formation or conquering proliferative impediment. Furthermore, overexpression of KLF10 significantly inhibited, whereas knockdown of KLF10 extremely promoted the capacity of proliferation, injury repairing and lumen-formation of renal tubular cells. In mechanism, PTEN/AKT pathway were validated as the downstream of KLF10 and participated in its regulation of tubular regeneration. By adopting proteomic mass spectrum and dual-luciferase reporter assay, ZBTB7A were found to be the upstream transcription factor of KLF10. Our findings suggest that downregulation of KLF10 positively contributed to tubular regeneration in cisplatin induced acute kidney injury via ZBTB7A-KLF10-PTEN axis, which gives insight into the novel therapeutic and diagnostical target of AKI.

6.
BMC Nephrol ; 24(1): 45, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849937

RESUMO

BACKGROUND: Accurate diagnosis and assessment of hematuria is crucial for the early detection of chronic kidney disease(CKD). As instability of urinary RBC count (URBC) often results with clinical uncertainty, therefore new urinary indexes are demanded to improve the accuracy of diagnosis of hematuria. In this study, we aimed to investigate the benefit of applying new complex indicators based on random urine red blood cell counts confirmed in hematuric kidney diseases. METHODS: All patients enrolled underwent renal biopsy, and their clinical information was collected. Urinary and blood biomedical indexes were implemented with red blood cell counts to derive complex indicators. Patients were divided into two groups (hematuria-dominant renal histologic lesions and non-hematuria-dominant renal histologic lesions) based on their renal pathological manifestations. The target index was determined by comparing the predictive capabilities of the candidate parameters for hematuric kidney diseases. Hematuria stratification was divided into four categories based on the scale of complex indicators and distributional features. The practicality of the new complex indicators was demonstrated by fitting candidate parameters to models comprising demographic information. RESULTS: A total of 1,066 cases (678 hematuria-dominant renal histologic lesions) were included in this study, with a mean age of 44.9 ± 15 years. In differentiating hematuria-dominant renal histologic lesion from the non-hematuria-dominant renal histologic lesion, the AUC value of "The ratio of the random URBC to 24-h albumin excretion" was 0.76, higher than the standard approach of Lg (URBC) [AUC = 0.744] (95% Confidence interval (CI) 0.712 ~ 0.776). The odds ratio of hematuria-dominant renal histologic lesion (Type I) increased from Q2 (3.81, 95% CI 2.66 ~ 5.50) to Q4 (14.17, 95% CI 9.09 ~ 22.72). The predictive model, composed of stratification of new composite indexes, basic demographic characteristics, and biochemical parameters, performed best with AUC value of 0.869 (95% CI 0.856-0.905). CONCLUSION: The new urinary complex indicators improved the diagnostic accuracy of hematuria and may serve as a useful parameter for screening hematuric kidney diseases.


Assuntos
Líquidos Corporais , Insuficiência Renal Crônica , Humanos , Adulto , Pessoa de Meia-Idade , Tomada de Decisão Clínica , Incerteza , Hematúria/diagnóstico , Rim , Insuficiência Renal Crônica/diagnóstico
7.
Front Immunol ; 13: 864984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585990

RESUMO

Aristolochic acid nephropathy (AAN) is a type of drug-induced nephropathy and is correlated with a potentially progression of kidney fibrosis. However, whether miR-382 is implicated in macrophage activation in AA-induced kidney fibrosis remains elusive. Here, cell-sorting experiments defined a significant miR-382 enrichment in renal macrophage after AAN 14 days. Then, we found that treatment of AA induced a significant switch in the phenotype of macrophage both in vivo and in vitro. Furthermore, miR-382 knockout (KO) mice and miR-382-/- bone marrow-derived macrophage (BMDM) were subjected to AA induction. We found that both systemic KO and macrophage-specific miR-382 depletion notably suppressed M2-like macrophage activation as well as kidney interstitial fibrosis. Additionally, adoptive transfer of miR-382 overexpression BMDMs into mice promoted AA-induced kidney injury. Moreover, in cultured macrophage, upregulation of miR-382 promoted M2-related gene expression, accompanied by downregulation of signal regulatory protein α (SIRP-α) and activation of signal transducer and activator of transcription 3 (STAT3). The interaction between miR-382 and SIRP-α was evaluated via dual-luciferase assay. Knockdown of SIRP-α upregulated phosphorylated STAT3 at S727 and Y705. Pharmacological inhibition of STAT3 was performed both in vivo and in vitro. Inhibition of STAT3 attenuated AA-induced kidney fibrosis, in parallel to lesser macrophage M2 polarization. Coculture experiments further confirmed that overexpressed miR-382 in macrophage promoted injuries of tubular cells. Luminex bio-chip detection suggested that IL-4 and CCL-5 were critical in the cross talk between macrophages and tubular cells. Taken together, our data suggest that miR-382 is a critical mediator in M2-like macrophage polarization and can be a promising therapeutic target for kidney fibrosis.


Assuntos
Nefropatias , Macrófagos , MicroRNAs , Receptores Imunológicos , Fator de Transcrição STAT3 , Animais , Ácidos Aristolóquicos , Fibrose , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
8.
Micromachines (Basel) ; 13(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35208308

RESUMO

With the research and the development of graphene-based materials, new sensors based on graphene compound materials are of great significance to scientific research and the consumer market. However, in the past ten years, due to the requirements of sensor accuracy, reliability, and durability, the development of new graphene sensors still faces many challenges in the future. Due to the special structure of graphene, the obtained characteristics can meet the requirements of high-performance sensors. Therefore, graphene materials have been applied in many innovative sensor materials in recent years. This paper introduces the important role and specific examples of sensors based on graphene and its base materials in biomedicine, photoelectrochemistry, flexible pressure, and other fields in recent years, and it puts forward the difficulties encountered in the application of graphene materials in sensors. Finally, the development direction of graphene sensors has been prospected. For the past two years of the COVID-19 epidemic, the detection of the virus sensor has been investigated. These new graphene sensors can complete signal detection based on accuracy and reliability, which provides a reference for researchers to select and manufacture sensor materials.

9.
Sci Rep ; 11(1): 11591, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078950

RESUMO

Making timely assessments of disease progression in patients with COVID-19 could help offer the best personalized treatment. The purpose of this study was to explore an effective model to predict the outcome of patients with COVID-19. We retrospectively included 188 patients (124 in the training set and 64 in the test set) diagnosed with COVID-19. Patients were divided into aggravation and improvement groups according to the disease progression. Three kinds of models were established, including the radiomics, clinical, and combined model. Receiver operating characteristic curves, decision curves, and Delong's test were used to evaluate and compare the models. Our analysis showed that all the established prediction models had good predictive performance in predicting the progress and outcome of COVID-19.


Assuntos
COVID-19/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Idoso , COVID-19/etiologia , Diagnóstico por Computador/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Prognóstico , Curva ROC
10.
Eur J Radiol ; 139: 109667, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33867180

RESUMO

OBJECTIVE: To investigate the relationship between CT radiomic features, pathological classification of pulmonary nodules, and evaluate the prediction effect of different stratified progressive radiomic models on the pathological classification of pulmonary nodules. METHODS: Altogether, 189 patients pathologically confirmed with pulmonary nodules from July 2017 to August 2019 who had complete data were enrolled, including 71 patients with benign nodules, 51 with malignant non-invasive nodules, and 67 with invasive nodules. Three CT radiomic models were established respectively. Model 1 classified benign and malignant nodules (including malignant non-invasive and invasive nodules). Model 2 classified malignant non-invasive and invasive nodules. Model 3 classified benign, malignant non-invasive, and invasive nodules. High-throughput feature collection was carried out for all delineated regions of interest (ROIs), and the best models were established by screening features and classifiers using intelligent methods. ROC curves and areas under the curve (AUCs) were used to evaluate the prediction efficacy of the models by calculating the sensitivity, specificity, accuracies, positive predictive values, and negative predictive values. RESULTS: Through Models 1, 2, and 3, we screened out 20, 2, and 20 radiomic features, respectively, and plotted the ROC curves. In the test group, the AUC values were 0.85, 0.89, and 0.84, respectively; the sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 79.66 %, 70.42 %, 84.59 %, and 81.74 % and 67.57% for Model 1, 88.06 %, 74.51 %, 82.2 %, 81.94 %, and 82.61 % for Model 2, and 71.34 %, 85.05 %, 70.37 %, 83.2 %, and 76.3 % for Model 3. CONCLUSION: The radiomic feature models based on CT images could well reflect the differences between benign nodules, malignant non-invasive nodules, and invasive nodules, and assist in their classification.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Curva ROC , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
11.
Proc Natl Acad Sci U S A ; 116(42): 20969-20976, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570596

RESUMO

RNA-guided CRISPR-Cas9 proteins have been widely used for genome editing, but their off-target activities limit broad application. The minimal Cas9 ortholog from Staphylococcus aureus (SaCas9) is commonly used for in vivo genome editing; however, no variant conferring high genome-wide specificity is available. Here, we report rationally engineered SaCas9 variants with highly specific genome-wide activity in human cells without compromising on-target efficiency. One engineered variant, referred to as SaCas9-HF, dramatically improved genome-wide targeting accuracy based on the genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) method and targeted deep sequencing analyses. Among 15 tested human endogenous sites with the canonical NNGRRT protospacer adjacent motif (PAM), SaCas9-HF rendered no detectable off-target activities at 9 sites, minimal off-target activities at 6 sites, and comparable on-target efficiencies to those of wild-type SaCas9. Furthermore, among 4 known promiscuous targeting sites, SaCas9-HF profoundly reduced off-target activities compared with wild type. When delivered by an adeno-associated virus vector, SaCas9-HF also showed reduced off-target effects when targeting VEGFA in a human retinal pigmented epithelium cell line compared with wild type. Then, we further altered a previously described variant named KKH-SaCas9 that has a wider PAM recognition range. Similarly, the resulting KKH-HF remarkably reduced off-target activities and increased on- to off-target editing ratios. Our finding provides an alternative to wild-type SaCas9 for genome editing applications requiring exceptional genome-wide precision.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Genoma , Engenharia de Proteínas , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Sequência de Bases , Proteína 9 Associada à CRISPR/química , Edição de Genes , Humanos , Staphylococcus aureus/química , Staphylococcus aureus/genética
12.
Nat Methods ; 16(8): 789, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31337886

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

13.
Nat Methods ; 16(8): 722-730, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308554

RESUMO

The combined effect of multiple mutations on protein function is hard to predict; thus, the ability to functionally assess a vast number of protein sequence variants would be practically useful for protein engineering. Here we present a high-throughput platform that enables scalable assembly and parallel characterization of barcoded protein variants with combinatorial modifications. We demonstrate this platform, which we name CombiSEAL, by systematically characterizing a library of 948 combination mutants of the widely used Streptococcus pyogenes Cas9 (SpCas9) nuclease to optimize its genome-editing activity in human cells. The ease with which the editing activities of the pool of SpCas9 variants can be assessed at multiple on- and off-target sites accelerates the identification of optimized variants and facilitates the study of mutational epistasis. We successfully identify Opti-SpCas9, which possesses enhanced editing specificity without sacrificing potency and broad targeting range. This platform is broadly applicable for engineering proteins through combinatorial modifications en masse.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Mutagênese , Mutação , RNA Guia de Cinetoplastídeos/genética , Software , Humanos , Engenharia de Proteínas , Streptococcus pyogenes/enzimologia , Especificidade por Substrato
14.
Int J Surg Pathol ; 27(5): 561-567, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30714449

RESUMO

Ewing sarcomas are typified by EWSR1 fusion to ETS gene family members. Tumors with fusion partners other than ETS family members and atypical histologic features pose significant diagnostic challenges and controversies as to their classification. In this article, we report a tumor with EWSR1-NFATC2 fusion in the left femur of a 43-year-old man and with unusual morphologic features that resemble undifferentiated high-grade sarcoma. Analysis together with reported cases in the literature shows that tumors with EWSR1-NFATC2 exhibit distinctive clinicopathologic features, including predilection for young male adults, highly variable histology that varies from round cell tumors frequently associated with nuclear irregularity, short spindle cells with nuclear pleomorphism, to myoepithelial tumor-like with or without myxohyaline matrix. They show variable positivity to CD99, frequent expression of cytokeratins, and consistent high-level amplification of EWSR1-NFATC2 fusion gene with distinctive gene expression profile. These tumors thus deserve classification separate from Ewing sarcoma.


Assuntos
Neoplasias Ósseas/diagnóstico , Fêmur/patologia , Proteínas de Fusão Oncogênica/genética , Osteossarcoma/diagnóstico , Sarcoma de Ewing/diagnóstico , Antígeno 12E7/metabolismo , Adulto , Amputação Cirúrgica , Biópsia , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Quimioterapia Adjuvante , Diagnóstico Diferencial , Fêmur/cirurgia , Amplificação de Genes , Humanos , Masculino , Metotrexato/uso terapêutico , Osteossarcoma/genética , Osteossarcoma/terapia , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Resultado do Tratamento
15.
Biol Reprod ; 95(1): 21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27146031

RESUMO

Chemokine receptor type 4 (CXCR4) has been suggested to regulate cell migration and invasion in human somatic cells. However, its role in human oocytes and embryos has not been investigated directly. Here we show that CXCR4 mRNA was initially expressed at the 4-cell stage, and its expression gradually increased until the blastocyst stage, whereas its protein was detectable only after the 8-cell stage. In addition, CXCR4 mRNA and protein were expressed in the inner cell mass (ICM) and trophectoderm (TE) cell of the blastocyst. Furthermore, we collected embryos from women whose embryos had undergone successful implantation (SI) and those whose embryos had failed implantation (FI) in their fresh cycles. TE cells from the FI group had reduced CXCR4 mRNA expression relative to those from the SI group but not in the ICM. Through ICM replacement, we constructed mouse blastocysts in which Cxcr4 was specifically knocked down in TE cells to simulate the CXCR4 expression profile of human blastocysts from the FI group. In this case, we found that the implantation rate significantly decreased after transfer of reconstructed embryos. Bioinformatic analysis indicated that CXCR4 can induce cell apoptosis and migration mediated by Rho signaling. This hypothesis was confirmed by invasion and migration experiments, using a human trophoblast cell line. The present study is the first to explore the characteristics of CXCR4 expression using human oocytes and embryos and suggests that CXCR4 is required upstream of TE cell apoptosis and migration. CXCR4 expression is a potential biomarker to predict implantation competence during assisted reproductive technologies.


Assuntos
Blastocisto/metabolismo , Movimento Celular/fisiologia , Implantação do Embrião/fisiologia , Receptores CXCR4/metabolismo , Trofoblastos/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Receptores CXCR4/genética , Transdução de Sinais/fisiologia
17.
Stem Cell Res Ther ; 6: 69, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25879223

RESUMO

INTRODUCTION: Human parthenogenetic embryonic stem cells (hpESCs) are generated from artificially activated oocytes, however, the issue of whether hpESCs have equivalent differentiation ability to human fertilized embryonic stem cells remains controversial. METHODS: hpESCs were injected into male severe combined immunodeficiency (SCID) mice and the efficiency of teratoma formation was calculated. Then the gene expression and methylation modification were detected by real time-PCR and bisulfate methods. RESULTS: Comparison of five hpESCs with different differentiation abilities revealed that levels of paternal genes in the Dlk1-Dio3 region on chromosome 14 in the hpESCs with high differentiation potential are enhanced, but strictly methylated and silenced in the hpESCs with lower differentiation potential. Treatment with ascorbic acid, rescued their ability to support teratoma formation and altered the expression profiles of paternally expressed genes in hpESCs that could not form teratoma easily. No differences in the expression of other imprinting genes were evident between hpESCs with higher and lower differentiation potential, except for those in the Dlk1-Dio3 region. CONCLUSIONS: The Dlk1-Dio3 imprinting gene cluster distinguishes the differentiation ability of hpESCs. Moreover, modification by ascorbic acid may facilitate application of hpESCs to clinical settings in the future by enhancing their pluripotency.


Assuntos
Ácido Ascórbico/farmacologia , Células-Tronco Embrionárias/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Iodeto Peroxidase/genética , Proteínas de Membrana/genética , Teratoma/prevenção & controle , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Metilação de DNA/genética , Técnicas de Cultura Embrionária , Expressão Gênica/genética , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Iodeto Peroxidase/biossíntese , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos SCID , Família Multigênica/genética , Partenogênese , Células-Tronco Pluripotentes/efeitos dos fármacos , Teratoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...