Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2406788121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865267

RESUMO

Heritable symbionts are common among animals in nature, but the molecular mechanisms underpinning symbiont invasions of host populations have been elusive. In this study, we demonstrate the spread of Rickettsia in an invasive agricultural pest, the whitefly Bemisia tabaci Mediterranean (MED), across northeastern China from 2018 to 2023. Here, we show that the beneficial symbiont Rickettsia spreads by manipulating host hormone signals. Our analyses suggest that Rickettsia have been horizontally acquired by B. tabaci MED from another invasive whitefly B. tabaci Middle East-Asia Minor 1 during periods of coexistence. Rickettsia is transmitted maternally and horizontally from female B. tabaci MED individuals. Rickettsia infection enhances fecundity and results in female bias among whiteflies. Our findings reveal that Rickettsia infection stimulates juvenile hormone (JH) synthesis, in turn enhancing fecundity, copulation events, and the female ratio of the offspring. Consequently, Rickettsia infection results in increased whitefly fecundity and female bias by modulating the JH pathway. More female progeny facilitates the transmission of Rickettsia. This study illustrates that the spread of Rickettsia among invasive whiteflies in northeastern China is propelled by host hormone regulation. Such symbiont invasions lead to rapid physiological and molecular evolution in the host, influencing the biology and ecology of an invasive species.


Assuntos
Fertilidade , Hemípteros , Rickettsia , Razão de Masculinidade , Simbiose , Animais , Rickettsia/fisiologia , Hemípteros/microbiologia , Hemípteros/fisiologia , Feminino , Masculino , Hormônios Juvenis/metabolismo , China
2.
Genes Genomics ; 46(5): 621-635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38536617

RESUMO

BACKGROUND: TFP5 is a Cdk5 inhibitor peptide, which could restore insulin production. However, the role of TFP5 in diabetic nephropathy (DN) is still unclear. OBJECTIVE: This study aims to characterize the transcriptome profiles of mRNA and lncRNA in TFP5-treated DN mice to mine key lncRNAs associated with TFP5 efficacy. METHODS: We evaluated the role of TFP5 in DN pathology and performed RNA sequencing in C57BL/6J control mice, C57BL/6J db/db model mice, and TFP5 treatment C57BL/6J db/db model mice. The differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were analyzed. WGCNA was used to screen hub-gene of TFP5 in treatment of DN. RESULTS: Our results showed that TFP5 therapy ameliorated renal tubular injury in DN mice. In addition, compared with the control group, the expression profile of lncRNAs in the model group was significantly disordered, while TFP5 alleviated the abnormal expression of lncRNAs. A total of 67 DElncRNAs shared among the three groups, 39 DElncRNAs showed a trend of increasing in the DN group and decreasing after TFP treatment, while the remaining 28 showed the opposite trend. DElncRNAs were enriched in glycosphingolipid biosynthesis signaling pathways, NF-κB signaling pathways, and complement activation signaling pathways. There were 1028 up-regulated and 1117 down-regulated DEmRNAs in the model group compared to control group, and 123 up-regulated and 153 down-regulated DEmRNAs in the TFP5 group compared to the model group. The DEmRNAs were involved in PPAR and MAPK signaling pathway. We confirmed that MSTRG.28304.1 is a key DElncRNA for TFP5 treatment of DN. TFP5 ameliorated DN maybe by inhibiting MSTRG.28304.1 through regulating the insulin resistance and PPAR signaling pathway. The qRT-PCR results confirmed the reliability of the sequencing data through verifying the expression of ENSMUST00000211209, MSTRG.31814.5, MSTRG.28304.1, and MSTRG.45642.14. CONCLUSION: Overall, the present study provides novel insights into molecular mechanisms of TFP5 treatment in DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , RNA Longo não Codificante , Camundongos , Animais , Transcriptoma , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica/métodos , Reprodutibilidade dos Testes , Receptores Ativados por Proliferador de Peroxissomo/genética , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética
3.
Vet Microbiol ; 292: 110062, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518631

RESUMO

Exosomes, which are small membrane-enclosed vesicles, are actively released into the extracellular space by a variety of cells. Growing evidence indicates that exosomes derived from virus-infected cells can selectively encapsulate viral proteins, genetic materials, or even entire virions. This enables them to mediate cell-to-cell communication and facilitate virus transmission. Classical swine fever (CSF) is a disease listed by the World Organisation for Animal Health (WOAH) Terrestrial Animal Health Code and must be reported to the organisation. It is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. Recent studies have demonstrated that extracellular vesicles originating from autophagy can facilitate the antibody-resistant spread of classical swine fever virus. However, due to the extreme difficulty in achieving a complete separation from virions, the role of exosomes during CSFV infection and proliferation remains elusive. In this study, we ingeniously chose to perform immunoprecipitation (IP) targeting the CSFV E2 protein, thereby achieving the complete removal of infectious virions. Subsequently, we discovered that the purified exosomes are shown to contain viral genomic RNA and partial viral proteins. Furthermore, exosomes secreted by CSFV-infected cells can evade CSFV-specific neutralizing antibodies, establish subsequent infection, and stimulate innate immune system after uptake by recipient cells. In summary, exosomes play a critical role in CSFV transmission. This is of great significance for in-depth exploration of the characteristics of CSFV and its complex interactions with the host.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Exossomos , Doenças dos Suínos , Suínos , Animais , Vírus da Febre Suína Clássica/genética , Anticorpos Neutralizantes , Proteínas Virais , Imunidade Inata
4.
Mol Immunol ; 166: 65-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244370

RESUMO

Diabetic nephropathy(DN) remains a significant risk factor for cardiovascular and all-cause mortality, and end-stage renal disease (ESRD) associated with it is growing in prevalence.However, there is absolutely no curative strategy for DN. We subjected db/db and control mouse kidneys to transcriptional sequencing analysis to obtain transcriptome expression profile data in the diabetic nephropathy.We next performed differential analysis of db/db and control mice kidney sequencing data to obtain differentially expressed genes. The differential expressed genes were intersected with the oxidative stress and inflammatory response related genes derived from the MGI/MsiDB gene set to yield oxidative stress inflammatory response related differential 122 genes (OIRDEGs). To further clarify the biological functions of DEGs, we conducted GOKEGG analysis and obtained the top 20 genes by five computational algorithms of the cytohubba plugin via cytoscape, respectively. The genes obtained by the five algorithms were intersected and the intersection genes were considered as key genes,including Cd40lg, Il2rb, Lck, Il2rg, Zap70, Serpinb1a. Also,we used GSEA and immune infiltration analysis to clarify the biological signaling pathways and immune cell infiltration that are substantial in the diabetic nephropathy.Correlation studies of key genes with immune cell infiltration revealed that they were correlated with the majority types of T cells while only with two types of B cells.Then, we predicted miRNA and TF for the key genes and constructed the interaction network. Finally, the expression differences of key genes were examined by validation dataset and RT-PCR experiment.In conclusion,we have identified key genes associated with T cell immune response in a diabetic nephropathy model, which bear significance in the etiopathogenesis of immunological injury in diabetic nephropathy and provide an innovative proposal for the recognition and management of DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Serpinas , Animais , Camundongos , Nefropatias Diabéticas/genética , Algoritmos , Linfócitos B , Ligante de CD40 , Biologia Computacional
5.
Nanotechnology ; 35(17)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38150721

RESUMO

5,6,11,12-tetraphenylnaphthacene (rubrene) exhibits resonant energy properties (ES1,rub≈ 2ET1,rub), resulting in rubrene-based organic light-emitting diode (OLED) devices that undergo the singlet fission (STT) process at room temperature. This unique process gives rise to a distinct magneto-electroluminescence (MEL) profile, differing significantly from the typical intersystem crossing (ISC) process. Therefore, in this paper, we investigate charge generation and separation in the interconnector, and the mechanism of charge transport in tandem OLEDs at room temperature using MEL tools. We fabricate tandem OLEDs comprising green (Alq3) and yellow (Alq3:rubrene) electroluminescence (EL) units using different interconnectors. The results demonstrate that all devices exhibited significant rubrene emission. However, the MEL did not exhibit an STT process with an increasing magnetic field, but rather a triplet-triplet annihilation (TTA) process. This occurrence is attributed to direct carrier trapping within doped EL units, which hinders the transport of rubrene trapped charges, consequently prolonging the lifetime of triplet excitons (T1,rub). Thus, the increased T1,rubconcentration causes TTA to occur at room temperature, causing the rapid decrease of MEL in all devices under high magnetic fields. In devices where only the TTA process occurs, the TTA increases with the increasing current. Consequently, the high magnetic field of devices A-C is only related to TTA. Notably, there exists a high magnetic field TTA of device D in the Alq3/1,4,5,8,9,11-Hexaazatriphenylene-hexacarbonitrile interconnector regardless of the current. This occurs because both EL units in the device emit simultaneously, resulting in the triplet-charge annihilation process of Alq3in the high magnetic field of the MEL. Moreover, the rapid increase in MEL at low magnetic field across all devices is attributed to the ISC between Alq3polaron pairs. This entire process involves Förster and Dexter energy transfer. This article not only provides novel insights into charge generation and separation in the interconnector but also enhances our understanding of the microscopic mechanisms in tandem OLED devices.

6.
Transl Neurosci ; 14(1): 20220318, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37901140

RESUMO

Objectives: Cyclin-dependent kinase 5 (Cdk5) activity is specifically active in neurogenesis, and Cdk5 and neocortical neurons migration related biomarker are expressed in Cos-7 cells. However, the function of Cdk5 on the transformation of immortalized Cos-7 cells into neuronal-like cells is not clear. Methods: Cdk5 kinase activity was measured by [γ-32P] ATP and p81 phosphocellulose pads based method. The expression of neuron liker markers was evaluated by immunofluorescence, real-time PCR, Western blot, and Elisa. Results: P35 overexpression upregulated Cdk5 kinase activity in Cos-7 cells. p35 mediated Cdk5 expression promoted the generation of nerite-like outgrowth. Compared with the empty vector, p35-induced Cdk5 activation resulted in time-dependent increase in neuron-like marker, including Tau, NF-H, NF-H&M, and TuJ1. Tau-5 and NF-M exhibited increased expression at 48 h while TuJ1 was only detectable after 96 h in p35 expressed Cos-7 cells. Additionally, the neural cell biomarkers exhibited well colocation with p35 proteins. Next-generation RNA sequence showed that p35 overexpression significantly upregulated the level of nerve growth factor (NGF). Gene set enrichment analysis showed significant enrichment of multiple neuron development pathways and increased NGF expression after p35 overexpression. Conclusion: p35-mediated Cdk5 activation promotes the transformation of immortalized Cos-7 cells into neuronal-like cells by upregulating NGF level.

7.
Int J Biol Macromol ; 253(Pt 3): 126690, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673156

RESUMO

The softening of acidified chili peppers induced by processing and storage has become a major challenge for the food industry. This study aims to explore the impact of pasteurization techniques, thermal processing (TP), high-pressure processing (HPP), addition of sodium metabisulfite (SMS), and storage conditions (25 °C, 37 °C, and 42 °C for 30 days) on the texture-related properties of acidified chili pepper. The results showed that the textural properties of samples were destructed by TP (the hardness of samples decreased by 19.43 %) but were less affected by HPP and SMS. Compared with processing, storage temperature had a more dominant impact on texture and pectin characteristics. With increased storage temperature, water-solubilized pectin fraction content increased (increased by 160.99 %, 136.74 %, and 13.01 % in TP, HPP, and SMS-stored groups, respectively), but sodium carbonate-solubilized pectin fraction content decreased (decreased by 29.84 %, 26.81 %, and 8.60 % in TP-, HPP-, and SMS-stored groups, respectively), especially in TP-stored groups. Multivariate data analysis showed that softening was more closely related to pectin conversion induced by acid hydrolysis and pectinase depolymerization. This finding offers new perspectives for the production of acidified chili pepper.


Assuntos
Capsicum , Pasteurização , Pectinas , Temperatura , Antioxidantes/análise
8.
Nanotechnology ; 34(50)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37708884

RESUMO

Although the effect of the electron blocking layer (EBL) material, deoxyribonucleic acid (DNA), on the electroluminescence (EL) performance of organic light-emitting diodes (OLEDs) has been studied, the process of DNA regulation of exciton recombination region within the device is still unclear. Herein, devices with and without EBL were fabricated using different DNA spin-coating speeds, and the photoelectric performance of device were measured. By using DNA compounded with cetyltrimethyl ammonium (CTMA) as the EBL and hole buffer layer, so-called BioLEDs. The DNA-based green Alq3BioLEDs achieve higher luminance (39 000 cd m-2) and higher current efficiency (8.4 cd A-1), which are increased by 49% and 54%, respectively, compared to the reference OLEDs without the addition of DNA. Similarly, the maximum luminance and efficiency of yellow Rubrene BioLEDs is increased by 64% (from 12 120 to 19 820 cd m-2) and 74% (from 1.36 to 2.36 cd A-1), the luminance and efficiency of blue TCTA BioLEDs is increased by 101% and 245%. Specifically, we found that as the thickness of DNA-CTMA increases, the exciton recombination region moves towards the interface between the emitting layer (EML) and the hole transport layer (HTL). By better confining excitons within the EML, the current efficiency of the BioLEDs is effectively improved. Accordingly, we provide a possible idea for achieve high performance DNA-based BioLEDs by adding DNA-CTMA EBL and hole buffer layers. Meanwhile, as the DNA thickness increases, the exciton recombination region moves towards the EML/HTL interface, thereby enhancing the efficiency of the DNA-based BioLEDs.

9.
Phys Chem Chem Phys ; 25(35): 23783-23791, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37622246

RESUMO

Although the effect of the electron transport layer (ETL) material TmPyPb on the electroluminescence performance of organic light-emitting diodes (OLEDs) has been extensively studied, the process of TmPyPb regulating exciton recombination and annihilation within the device is still unclear. Here, we fabricated devices of various TmPyPb thicknesses with and without ETL. Subsequently, we measured the magneto-electroluminescence (MEL) of these devices. Specifically, at the same luminance, the triplet-charge annihilation (TQA) process is more likely to occur as the thickness of TmPyPb increases, resulting in a decrease in the maximum luminance of devices. Due to electron leakage and exciton recombination region moving towards the cathode, leading to a decrease in luminance efficiency at first and then an enhancement with an increase in the thickness of TmPyPb. Furthermore, at room temperature, the application of a large bias voltage suppresses singlet fission (SF) processes by modulating the dissociation of singlet polaron pairs (PPS) and the concentration of triplet exciton (T1). This leads to the conversion of SF to the TQA process. At low temperatures, the bias voltage and temperature can regulate the concentration and lifetime of PPS and T1. Therefore, as the temperature decreases, the transition of SF → TQA → triplet-triplet annihilation (TTA) and TQA coexistence → TTA process occurs. Moreover, MEL responses of the TmPyPb-ETL device show a W-linear pattern owing to the combined effect of the hyperfine interaction (HFI) and Zeeman splitting at 145 K. Accordingly, we explored the electroluminescence (EL) performance of TmPyPB-ETL OLEDs and investigated the evolution of SF, TQA, and TTA processes using MEL. Our study revealed the effect of exciton recombination and annihilation in OLEDs with varying thicknesses of TmPyPb.

10.
Polymers (Basel) ; 15(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37571169

RESUMO

Although the effect of the conductive polymers PEDOT:PSS on the electroluminescence performance of doped-type organic light-emitting diodes (OLEDs) has been studied, the process of PEDOT:PSS regulation of exciton recombination region and concentration within the deoxyribonucleic acid (DNA)-based doped-type BioLEDs is still obscure. In this study, we fabricated Bio-devices with and without PEDOT:PSS using varying spin-coating speeds of PEDOT:PSS. The Alq3:Rubrene-based BioLEDs achieve higher luminance (44,010 cd/m2) and higher luminance efficiency (8.1 cd/A), which are increased by 186% and 478%, respectively, compared to the reference BioLEDs without PEDOT:PSS. Similarly, the maximum luminance and efficiency of blue TCTA:TPBi exciplex-type BioLEDs are increased by 224% and 464%. In particular, our findings reveal that with an increasing thickness of PEDOT:PSS, the region of exciton recombination shifts towards the interface between the emitting layer (EML) and the hole transport layer (HTL). Meanwhile, the concentration of singlet exciton (S1,Rub) and triplet exciton (T1,Rub) increases, and the triplet-triplet annihilation (TTA) process is enhanced, resulting in the enhanced luminescence and efficiency of the devices. Accordingly, we provide a possible idea for achieving high performance doped-type BioLEDs by adding conductive polymers PEDOT:PSS, and revealing the effect of exciton recombination and conversion in BioLEDs given different PEDOT:PSS thicknesses.

11.
RSC Adv ; 13(34): 23619-23625, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37555095

RESUMO

Organic light-emitting diodes (OLEDs) are considered one of the most promising new display technologies owing to their advantages, such as all-solid-state, high color gamut, and wide viewing angle. However, in terms of special fields, the brightness, lifetime, and stability of the devices need further improvement. Therefore, heterojunction devices with different concentrations were prepared to regulate device brightness. The brightness of the bulk heterojunction device is enhanced by 9740 cd m-2, with a growth rate of about 26.8%. The impact of various temperatures and various exciton concentrations on the device magneto-conductance (MC) and magneto-electroluminescence (MEL) was investigated. Experimental results demonstrate that the exciton concentration inside the device can be tuned to improve optoelectronic properties and organic magnetic effects. The complex spin mixing process inside the bulk heterojunction device is deeply investigated, which provides a reliable basis for the design of bulk heterojunction devices.

12.
Biologicals ; 83: 101692, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37442044

RESUMO

Productivity and stability of Pseudorabies virus (PRV) are critical for the manufacture and storage of live attenuated pseudorabies vaccine. Trehalose is commonly used as a cryoprotectant to stabilize organisms during freezing and lyophilization. Trehalose transporter 1 (Tret1), derived from Polypedilum vanderplanki, can deliver trehalose with a reversible transporting direction. In this study, we demonstrated that productivity and stability of PRV proliferated in recombinant ST cells with stable expression of Tret1 were enhanced. As a result, a five-fold increase of intracellular trehalose amount was observed, and the significant increase of progeny viral titer was achieved in recombinant cells with the addition of 20 mM trehalose. Particularly, after storage for 8 weeks at 20 °C, the loss of viral titer was 0.8 and 1.7 lgTCID50/mL lower than the control group with or without the addition of trehalose. Additionally, the freeze-thaw resistance at -20 °C and -70 °C of PRV was significantly enhanced. Furthermore, according to standard international protocols, a series of tests, including karyotype analysis, tumorigenicity, and the ability of proliferation PRV, were conducted. Our results demonstrated that the recombinant ST cell with Tret1 is a promising cell substrate and has a high potential for producing more stable PRV for the live attenuated vaccine.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Animais , Suínos , Herpesvirus Suídeo 1/metabolismo , Trealose/metabolismo , Pseudorraiva/prevenção & controle , Congelamento , Doenças dos Suínos/prevenção & controle
13.
Biomark Med ; 17(20): 841-848, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38180339

RESUMO

Aim: To evaluate whether platelet-to-albumin ratio (PAR) can predict diabetic nephropathy (DN) in type 2 diabetes mellitus (T2DM). Materials & methods: A total of 140 patients with T2DM and 40 healthy individuals were enrolled retrospectively. T2DM patients were divided into three groups based on the urinary albumin-to-creatinine ratio, PAR was compared and receiver operating characteristic curve was constructed to evaluate the predictive value of PAR in DN in T2DM. Results: There was a significant increase of PAR in DN among T2DM patients and PAR was positively correlated with serum creatinine, retinol-conjugated protein and ß2-microglobulin. Moreover, PAR was a risk factor for DN in T2DM patients, which predicted DN in T2DM with high sensitivity and specificity. Conclusion: PAR can be a potential candidate to predict DN in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Estudos Retrospectivos , Biomarcadores , Albuminas
14.
Curr Res Food Sci ; 5: 1295-1304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36065197

RESUMO

In this study, the effects of thermal processing (TP), high pressure processing (HHP), and preservatives addition, i.e. sodium metabisulfite (SMS), on flavor changes in acidified chili peppers were compared. In addition, their changes during different storage periods (25, 37, and 42 °C for 30 days) were also investigated. The results indicate that TP clearly changed the flavor properties of acidified chili peppers compared to other processing, such as an increase in organic acid contents and titratable acid (TA) values but a decrease in pH value, free amino acid (FAA) concentrations, and some aromatic compound contents (e.g., esters and aldehydes). For SMS groups, more biter FAAs and higher alcohol concentrations were detected. Some terpenes (e.g., ß-ocimene) significantly increased in samples after HPP (P < 0.05). In addition, storage conditions also clearly affected their flavor, particularly for high storage temperature. During storage, pH fast decreased but TA values and organic acids increased; FAAs firstly increased but followed decreased; esters and terpenes were the main compounds decreasing. Furthermore, some off-flavor related compounds were produced when samples were stored at high temperature, such as furans, aldehydes, and oxides. The outcome of this study could provide new insights into the effects of processing and storage conditions on flavor changes and guide production for the acidified chili pepper industry.

15.
J Phys Condens Matter ; 34(43)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973417

RESUMO

Non-equilibrium phases of matter have attracted much attention in recent years, among which the Floquet phase is a hot point. In this work, based on the periodic driving non-Hermitian model, we reveal that the winding number calculated in the framework of the Bloch band theory has a direct connection with the number of edge states even though the non-Hermiticity is present. Further, we find that the change of the phase of the hopping amplitude can induce the topological phase transitions. Precisely speaking, the increase in the value of the phase can bring the system into a topological phase with a large topological number. Moreover, it can be unveiled that the introduction of the purely imaginary hopping term brings an extremely rich phase diagram. In addition, we can select the even topological invariant exactly from the unlimited winding numbers if we only consider the next-nearest neighbor hopping term. Here, the results obtained may be useful for understanding the periodic driving non-Hermitian theory.

16.
Int J Neurosci ; : 1-9, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35815397

RESUMO

BACKGROUND: Parkinson's disease (PD), as a chronic and progressive neurodegenerative disease, is associated with autophagy. This study focused on the regulation of sinomenine (SN) on autophagy in PD and its related mechanism. METHODS: The PD mouse model was constructed by MPTP inducement, and the mouse motor function after modeling and SN treatment was examined by rotarod, grip strength, and foot printing tests. Tyrosine hydroxylase (TH)/LC3B-positive neurons in the substantia nigra pars compacta of mouse brains were detected by immunofluorescence. The expressions of proteins related to autophagy (Beclin1, p62, LC3-I and LC3-II) and phosphorylated phosphoinositide 3-kinase (PI3K)/AKT/mechanistic target of rapamycin kinase (mTOR) signaling pathway were measured by western blot. Rescue experiments were performed to determine the effects of MHY1485 (mTOR activator) on SN-treated PD mice. RESULTS: SN potentiated the motor ability in PD mice, promoted the survival of dopaminergic neurons, increased the protein expression level of Beclin1, LC3-II/LC3-I ratio and LC3B-positive neurons, lowered the protein expression level of p62 and inactivated PI3K/AKT/mTOR pathway in the substantia nigra tissue of mouse brains. Moreover, MHY1485 reversed the above effects of SN on PD mice via reactivating PI3K/AKT/mTOR pathway. CONCLUSION: SN augments the autophagy of dopaminergic neurons via inhibiting the PI3K/AKT/mTOR pathway and exerts a neuroprotective effect on PD mice.

17.
Front Cell Dev Biol ; 10: 829067, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874807

RESUMO

Diabetic nephropathy (DN) is one of the leading causes of chronic kidney disease (CKD), during which hyperglycemia is composed of the major force for the deterioration to end-stage renal disease (ESRD). However, the underlying mechanism triggering the effect of hyperglycemia on DN is not very clear and the clinically available drug for hyperglycemia-induced DN is in need of urgent development. Here, we found that high glucose (HG) increased the activity of cyclin-dependent kinase 5 (CDK5) dependent on P35/25 and which upregulated the oxidative stress and apoptosis of mouse podocytes (MPC-5). TFP5, a 25-amino acid peptide inhibiting CDK5 activity, decreased the secretion of inflammation cytokines in serum and kidney, and effectively protected the kidney function in db/db mouse from hyperglycemia-induced kidney injuries. In addition, TFP5 treatment decreased HG-induced oxidative stress and cell apoptosis in MPC-5 cells and kidney tissue of db/db mouse. The principal component analysis (PCA) of RNA-seq data showed that MPC-5 cell cultured under HG, was well discriminated from that under low glucose (LG) conditions, indicating the profound influence of HG on the properties of podocytes. Furthermore, we found that HG significantly decreased the level of NGF and Sirt1, both of which correlated with CDK5 activity. Furthermore, knockdown of NGF was correlated with the decreased expression of Sirt1 while NGF overexpression leads to upregulated Sirt1 and decreased oxidative stress and apoptosis in MPC-5 cells, indicating the positive regulation between NGF and Sirt1 in podocytes. Finally, we found that K252a, an inhibitor of NGF treatment could undermine the protective role of TFP5 on hyperglycemia-induced DN in db/db mouse model. In conclusion, the CDK5-NGF/Sirt1 regulating axis may be the novel pathway to prevent DN progression and TFP5 may be a promising compound to improved hyperglycemia induced DN.

18.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(4): 360-365, 2022 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-35527408

RESUMO

OBJECTIVES: To study the clinical efficacy of ultrasound-guided endoscopic retrograde appendicitis therapy in children with appendix-related chronic abdominal pain. METHODS: A retrospective analysis was performed on the medical data of 30 children with the chief complaint of chronic abdominal pain who were admitted from August 2019 to May 2021. All the children were found to have inflammation of the appendix or intracavitary stool and fecalith by ultrasound and underwent ultrasound-guided endoscopic retrograde appendicitis therapy. The medical data for analysis included clinical manifestations, endoscopic findings, white blood cell count, neutrophil percentage, length of hospital stay, and cure rate. RESULTS: Among the 30 children with chronic abdominal pain, there were 13 boys (43%) and 17 girls (57%), with a mean age of (9±3) years (range 3-15 years) at diagnosis. The median duration of the disease was 12 months, and the median length of hospital stay was 3 days. The children had a median white blood cell count of 6.7×109/L and a neutrophil percentage of 50%±13%. Fecalith and a large amount of feces were flushed out of the appendix cavity for 21 children (70%) during surgery. The follow-up rate was 97% (29/30), and the median follow-up time was 11 months (range 5-26 months). Of the 29 children, abdominal pain completely disappeared in 27 children (93%). CONCLUSIONS: Ultrasound-guided endoscopic retrograde appendicitis therapy is effective in children with chronic abdominal pain caused by feces or fecalith in the appendix cavity.


Assuntos
Apendicite , Apêndice , Impacção Fecal , Dor Abdominal/etiologia , Adolescente , Apendicite/diagnóstico por imagem , Apendicite/cirurgia , Apêndice/diagnóstico por imagem , Apêndice/cirurgia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos Retrospectivos , Ultrassonografia de Intervenção
19.
Front Neurol ; 13: 723923, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35528741

RESUMO

Objective: The purpose of this pilot study was to determine if military service members with histories of hundreds to thousands of low-level blast exposures (i. e., experienced breachers) had different levels of serum and neuronal-derived extracellular vesicle (EV) concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor alpha (TNFα), compared to matched controls, and if these biomarkers related to neurobehavioral symptoms. Methods: Participants were experienced breachers (n = 20) and matched controls without blast exposures (n = 14). Neuronal-derived EVs were isolated from serum and identified with mouse anti-human CD171. Serum and neuronal-derived EVs were analyzed for IL-6, IL-10, and TNFα using an ultra-sensitive assay. Results: Serum TNFα concentrations were decreased in breachers when compared to control concentrations (p < 0.01). There were no differences in serum concentrations of IL-6, IL-10, or the IL-6/IL-10 ratio between breachers and controls (p's > 0.01). In neuronal-derived EVs, TNFα and IL-6 levels were increased in breachers compared to controls (p's < 0.01), and IL-10 levels were decreased in the breacher group compared to controls (p < 0.01). In breachers the IL-6/IL-10 ratio in neuronal-derived EVs was higher compared to controls, which correlated with higher total Rivermead Post-concussion Questionnaire (RPQ) scores (p's < 0.05). Conclusions: These findings suggest that exposure of personnel to high numbers of low-level blast over a career may result in enduring central inflammation that is associated with chronic neurological symptoms. The data also suggest that peripheral markers of inflammation are not necessarily adequate surrogates for central neuroinflammation.

20.
Brain Inj ; 36(5): 652-661, 2022 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-35322723

RESUMO

BACKGROUND: Blast traumatic brain injury (TBI) and subconcussive blast exposure have been associated, pathologically, with chronic traumatic encephalopathy (CTE) and, clinically, with cognitive and affective symptoms, but the underlying pathomechanisms of these associations are not well understood. We hypothesized that exosomal microRNA (miRNA) expression, and their relation to neurobehavioral outcomes among Veterans with blunt or blast mild TBI (mTBI) may provide insight into possible mechanisms for these associations and therapeutic targets. METHODS: This is a subanalysis of a larger Chronic Effects of Neurotrauma Consortium Biomarker Discovery Project. Participants (n = 152) were divided into three groups: Controls (n = 35); Blunt mTBI only (n = 54); and Blast/blast+blunt mTBI (n = 63). Postconcussive and post-traumatic stress symptoms were evaluated using the NSI and PCL-5, respectively. Exosomal levels of 798 miRNA expression were measured. RESULTS: In the blast mTBI group, 23 differentially regulated miRNAs were observed compared to the blunt mTBI group and 23 compared to controls. From the pathway analysis, significantly dysregulated miRNAs in the blast exposure group correlated with inflammatory, neurodegenerative, and androgen receptor pathways. DISCUSSION: Our findings suggest that chronic neurobehavioral symptoms after blast TBI may pathomechanistically relate to dysregulated cellular pathways involved with neurodegeneration, inflammation, and central hormonal regulation.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas Traumáticas , MicroRNAs , Transtornos de Estresse Pós-Traumáticos , Veteranos , Traumatismos por Explosões/complicações , Traumatismos por Explosões/genética , Traumatismos por Explosões/psicologia , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/genética , Explosões , Humanos , MicroRNAs/genética , Transtornos de Estresse Pós-Traumáticos/complicações , Veteranos/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...