Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(1): 428-435, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38126714

RESUMO

Previous electrochemically powered yarn muscles cannot be usefully operated between extreme negative and extreme positive potentials, since generated stresses during anion injection and cation injection partially cancel because they are in the same direction. We here report an ionomer-infiltrated hybrid carbon nanotube (CNT) yarn muscle that shows unipolar stress behavior in the sense that stress generation between extreme potentials is additive, resulting in an enhanced stress generation. Moreover, the stress generated by this muscle unexpectedly increases with the potential scan rate, which contradicts the fact that scan-rate-induced stress decreases for neat CNT muscles. It is revealed by the electro-osmotic pump effect that the effective ion size injected into the muscle increases with an increase in the scan rate. We demonstrate an electrochemically powered gel-elastomer-yarn muscle adhesive that generates and delivers muscle-contraction-mimicking stimulation to a target tissue.

2.
Adv Mater ; 35(49): e2303035, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37209369

RESUMO

There has been enormous interest in technologies that generate electricity from ambient energy such as solar, thermal, and mechanical energy, due to their potential for providing sustainable solutions to the energy crisis. One driving force behind the search for new energy-harvesting technologies is the desire to power sensor networks and portable devices without batteries, such as self-powered wearable electronics, human health monitoring systems, and implantable wireless sensors. Various energy harvesting technologies have been demonstrated in recent years. Among them, electrochemical, hydroelectric, triboelectric, piezoelectric, and thermoelectric nanogenerators have been extensively studied because of their special physical properties, ease of application, and sometimes high obtainable efficiency. Multifunctional carbon nanotubes (CNTs) have attracted much interest in energy harvesting because of their exceptionally high gravimetric power outputs and recently obtained high energy conversion efficiencies. Further development of this field, however, still requires an in-depth understanding of harvesting mechanisms and boosting of the electrical outputs for wider applications. Here, various CNT-based energy harvesting technologies are comprehensively reviewed, focusing on working principles, typical examples, and future improvements. The last section discusses the existing challenges and future directions of CNT-based energy harvesters.

3.
Nanoscale ; 14(46): 17466, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36398562

RESUMO

Correction for 'Enhanced energy harvester performance by a tension annealed carbon nanotube yarn at extreme temperatures' by Xinghao Hu et al., Nanoscale, 2022, 14, 16185-16192, https://doi.org/10.1039/D2NR05303A.

4.
Nanoscale ; 14(43): 16185-16192, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36278850

RESUMO

Carbon nanotube (CNT) yarns generate electrical energy when they were stretched in an electrolyte, and they have been exploited for diverse applications such as self-powered sensors and human health monitoring systems. Here we improved the capacitance change and harvester performance of a coiled CNT yarn by using an incandescent tension annealing process (ITAP). When undergoing stretching cycles at 1 Hz, a coiled ITAP yarn can produce 2.5 times peak electrical power and 1.6 times output voltage than that of a neat CNT yarn. Electrochemical analysis shows that the capacitance of the ITAP yarn decreased by 20.4% when it was stretched to 30% strain. Microstructure results demonstrate that the large capacitance change may result from the densified electrochemical surface by the ITAP. Moreover, the potential of the zero charge (PZC) of ITAP yarns was shifted to a more negative value than that of the neat CNT yarn, which means that more charges were injected into the ITAP yarn once it was immersed in an electrolyte. Thus, the large capacitance change and initial injected charge are two main reasons for enhancing the harvester performance of the ITAP yarn. In addition, by annealing a twisted CNT yarn before it was coiled, we further increased the output peak power density to 170 W kg-1 at a strain of 55%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...