Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38048490

RESUMO

Herein, we report a straightforward strategy to construct reusable, hemocompatible, and highly efficient bilirubin adsorbents by installing zwitterionic modules into a porous organic polymer (POP) for hemoperfusion application. Three types of zwitterions with different amounts are used to evaluate their impacts on the characteristics of POPs, including carboxybetaine methacrylate (CB), sulfobetaine methacrylate (SB), and 2-methacryloyloxyethyl phosphorylcholine (MPC). Results show that zwitterions can improve hemocompatibility, hydrophilicity, and bilirubin uptake of the POP. Among all zwitterionic POPs, POP-CB-40% exhibits the best bilirubin uptake, ∼46.5 times enhancement compared with the non-zwitterionic POP in 100% serum. This enhancement can be attributed to the improved hydrophilicity and protein resistance ability in biological solutions. More importantly, the reusability test shows that POP-CB-40% maintains ∼99% of bilirubin uptake capacity at fifth recycling in 100% serum. Findings in this work provide a guideline for the design of biocompatible and efficient POP-based bilirubin adsorbents for hemoperfusion therapy.

2.
J Hazard Mater ; 362: 336-347, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243257

RESUMO

The development of ultra-efficient, sustainable, and easily accessible anode with relative non-precious semiconducting metal oxides is highly significant for application in the practical treatment of organically polluted water. Herein, we report SnO2, TiO2, and Ag2O ternary semiconductor metal oxide blend grafted Ag@AgCl hybrids, prepared with the one-step sol-gel method and applied as a dimensionally stable anode (DSA)-active layer on a SnO2-Sb/Ti electrode. Factors affecting crystal formation, including the presence or absence of O2 during calcination, the calcination temperature, and Ag@AgCl additive dosage were discussed. The micromorphology, phase composition, and photoelectrochemical activity of the newly designed anode were comprehensively characterized. The optimized preparation, which yielded a solid-solution structure with flat and smooth surface and well-crystallized lattice configuration, occurred in the absence of O2 during calcination at 550 ℃ with an Ag@AgCl additive dosage of 0.2 g in the sol-gel precursor. The newly designed DSA displayed improved electrocatalysis (EC) and photoelectrical catalysis (PEC) capacity. The phenol and its TOC removal efficiency reached 90.65% and 58.17% for 10 mA/cm2 current density with a metal halide lamp in 3 h. The lifespan was four times that of SnO2-Sb/Ti electrode. This proposed DSA construction strategy may support improved EC and PEC reactivities toward the decomposition of organic pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...