Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 128(20): 3889-98, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11641214

RESUMO

Neural determination in the Drosophila eye occurs progressively. A diffusible signal, Dpp, causes undetermined cells first to adopt a 'pre-proneural' state in which they are primed to start differentiating. A second signal is required to trigger the activation of the transcription factor Atonal, which causes the cells to initiate overt photoreceptor neurone differentiation. Both Dpp and the second signal are dependent on Hedgehog (Hh) signalling. Previous work has shown that the Notch signalling pathway also has a proneural role in the eye (as well as a later, opposite function when it restricts the number of cells becoming photoreceptors - a process of lateral inhibition). It is not clear how the early proneural role of Notch integrates with the other signalling pathways involved. We provide evidence that Notch activation by its ligand Delta is the second Hh-dependent signal required for neural determination. Notch activity normally only triggers Atonal expression in cells that have adopted the pre-proneural state induced by Dpp. We also report that Notch drives the transition from pre-proneural to proneural by downregulating two repressors of Atonal: Hairy and Extramacrochaetae.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Olho/crescimento & desenvolvimento , Olho/inervação , Proteínas de Membrana/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/fisiologia , Drosophila/genética , Proteínas de Drosophila/fisiologia , Proteínas Hedgehog , Proteínas de Insetos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Receptores Notch , Proteínas Repressoras/fisiologia , Transdução de Sinais
2.
Curr Biol ; 11(6): 396-404, 2001 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-11301250

RESUMO

BACKGROUND: The differentiation of regularly spaced structures within an epithelium is a common feature of developmental pattern formation. The regular spacing of ommatidia in the Drosophila eye imaginal disc provides a good model for this phenomenon. The correct spacing of ommatidia is a central event in establishing the precise hexagonal pattern of ommatidia in the Drosophila compound eye. The R8 photoreceptors are the founder cells of each of the ommatidia that comprise the adult eye and are specified by a bHLH transcription factor, Atonal. RESULTS: We find that the epidermal growth factor receptor (Egfr) has a primary function in regulating R8 spacing. The receptor's activation within nascent ommatidia induces the expression of a secreted inhibitor that blocks atonal expression, and therefore ommatidial initiation, in nearby cells. The identity of the secreted inhibitor remains elusive but, contrary to previous suggestions, we show that it is not Argos. This Egfr-dependent inhibition acts in parallel to the inhibition of atonal by the secreted protein Scabrous. The activation of the Egfr pathway is dependent on Atonal function via the expression of Rhomboid-1. Our results also allow us to conclude that Egfr's role in promoting cell survival is largely independent of its role in photoreceptor recruitment; even when cell death is blocked, most photoreceptors fail to form. CONCLUSIONS: Based on our data and those of others, we propose a model for R8 spacing that comprises a self-organizing network of signaling molecules. This model describes how successive rows of ommatidia form out of phase with each other, leading to the hexagonal array of facets in the compound eye.


Assuntos
Proteínas de Drosophila , Receptores ErbB/fisiologia , Olho/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster , Ativação Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Olho/metabolismo , Proteínas do Olho/metabolismo , Expressão Gênica , Glicoproteínas/metabolismo , Sequências Hélice-Alça-Hélice , Proteínas de Insetos/metabolismo , Proteínas de Membrana/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 97(13): 7331-5, 2000 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-10860999

RESUMO

Arthropod and vertebrate limbs develop from secondary embryonic fields. In insects, the wing imaginal disk is subdivided early in development into the wing and notum subfields. The activity of the Wingless protein is fundamental for this subdivision and seems to be the first element of the hierarchy of regulatory genes promoting wing formation. Drosophila epidermal growth factor receptor (DER) signaling has many functions in fly development. Here we show that antagonizing DER signaling during the second larval instar leads to notum to wing transformations and wing mirror-image duplications. DER signaling is necessary for confining the wing subregion in the developing wing disk and for the specification of posterior identity. To do so, DER signaling acts by restricting the expression of Wingless to the dorsal-posterior quadrant of wing discs, suppressing wing-organizing activities, and by cooperating in the maintenance of Engrailed expression in posterior compartment cells.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Drosophila/fisiologia , Receptores ErbB/fisiologia , Proteínas Quinases , Receptores de Peptídeos de Invertebrados/fisiologia , Animais , Diferenciação Celular/fisiologia , Embrião não Mamífero/fisiologia , Transdução de Sinais , Asas de Animais/embriologia
4.
Development ; 127(11): 2383-93, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10804180

RESUMO

The function of extramacrochaetae is required during the development of the Drosophila wing in processes such as cell proliferation and vein differentiation. extramacrochaetae encodes a transcription factor of the HLH family, but unlike other members of this family, Extramacrochaetae lacks the basic region that is involved in interaction with DNA. Some phenotypes caused by extramacrochaetae in the wing are similar to those observed when Notch signalling is compromised. Furthermore, maximal levels of extramacrochaetae expression in the wing disc are restricted to places where Notch activity is higher, suggesting that extramacrochaetae could mediate some aspects of Notch signalling during wing development. We have studied the relationships between extramacrochaetae and Notch in wing development, with emphasis on the processes of vein formation and cell proliferation. We observe strong genetic interaction between extramacrochaetae and different components of the Notch signalling pathway, suggesting a functional relationship between them. We show that the higher level of extramacrochaetae expression coincides with the domain of expression of Notch and its downstream gene Enhancer of split-m(beta). The expression of extramacrochaetae at the dorso/ventral boundary and in boundary cells between veins and interveins depends on Notch activity. We propose that at least during vein differentiation and wing margin formation, extramacrochaetae is regulated by Notch and collaborates with other Notch-downstream genes such as Enhancer of split-m(beta).


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila , Proteínas de Membrana/genética , Proteínas Repressoras , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores Notch
5.
Proc Natl Acad Sci U S A ; 97(6): 2609-14, 2000 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-10706613

RESUMO

Notch signaling is involved in cell differentiation and patterning during morphogenesis. In the Drosophila wing, Notch activity regulates the expression of several genes at the dorsal/ventral boundary, and this is thought to elicit wing-cell proliferation. In this work, we show the effect of clones of cells expressing different forms of several members of the Notch signaling pathway, which result in an alteration of Notch activity. The ectopic expression in clones of activated forms of Notch or of its ligands (Delta or Serrate) in the wing causes outgrowths associated with the appearance of ectopic wing margins. These outgrowths consist of mutant territories and of surrounding wild-type cells. However, the ectopic expression of Delta, at low levels in ventral clones, causes large outgrowths that are associated neither with the generation of wing margin structures nor with the expression of genes characteristic of the dorsal/ventral boundary. These results suggest that Notch activity is directly involved in cell proliferation, independently of its role in the formation of the dorsal/ventral boundary. We propose that the nonautonomous effects (induction of extraproliferation and vein differentiation in the surrounding wild-type cells) result from pattern accommodation to positional values caused by the ectopic expression of Notch.


Assuntos
Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/fisiologia , Asas de Animais/crescimento & desenvolvimento , Alelos , Animais , Divisão Celular/fisiologia , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitose , Fenótipo , Regiões Promotoras Genéticas , Receptores Notch , Asas de Animais/citologia , Asas de Animais/embriologia
6.
Development ; 126(24): 5739-47, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10572049

RESUMO

The Drosophila EGF receptor (DER) is required for the specification of diverse cell fates throughout development. We have examined how the activation of DER controls the development of vein and intervein cells in the Drosophila wing. The data presented here indicate that two distinct events are involved in the determination and differentiation of wing cells. (1) The establishment of a positive feedback amplification loop, which drives DER signaling in larval stages. At this time, rhomboid (rho), in combination with vein, initiates and amplifies the activity of DER in vein cells. (2) The late downregulation of DER activity. At this point, the inactivation of MAPK in vein cells is necessary for the maintenance of the expression of decapentaplegic (dpp) and becomes essential for vein differentiation. Together, these temporal and spatial changes in the activity of DER constitute an autoregulatory network that controls the definition of vein and intervein cell types.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/embriologia , Receptores ErbB/metabolismo , Proteínas Quinases , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Asas de Animais/embriologia , Animais , Diferenciação Celular , Proteínas do Olho/metabolismo , Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Pupa/crescimento & desenvolvimento
7.
Mech Dev ; 80(2): 133-46, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10072780

RESUMO

The Extramacrochaetae (emc) gene encodes a transcription factor with an HLH domain without the basic region involved in interaction with DNA present in other proteins that have this domain. EMC forms heterodimers with bHLH proteins preventing their binding to DNA, acting as a negative regulator. The function of emc is required in many developmental processes during the development of Drosophila, including wing morphogenesis. Mitotic recombination clones of both null and gain-of-function alleles of emc, indicate that during wing morphogenesis, emc participates in cell proliferation within the intervein regions (vein patterning), as well as in vein differentiation. The study of relationships between emc and different genes involved in wing development reveal strong genetic interactions with genes of the Ras signalling pathway (torpedo, vein, veinlet and Gap), blistered, plexus and net, in both adult wing phenotypes and cell behaviour in genetic mosaics. These interactions are also analyzed as variations of emc expression patterns in mutant backgrounds for these genes. In addition, cell proliferation behaviour of emc mutant cells varies depending on the mutant background. The results show that genes of the Ras signalling pathway are co-operatively involved in the activity of emc during cell proliferation, and later antagonistically during cell differentiation, repressing EMC expression.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/fisiologia , Proteínas Repressoras , Fatores de Transcrição/fisiologia , Asas de Animais/crescimento & desenvolvimento , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Divisão Celular , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Genes ras , Sequências Hélice-Alça-Hélice , Hibridização In Situ , Proteínas de Insetos/genética , Morfogênese/genética , Mosaicismo , Transdução de Sinais , Fatores de Transcrição/genética , Veias , Asas de Animais/irrigação sanguínea , Proteínas ras/fisiologia
8.
Development ; 125(10): 1823-32, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9550715

RESUMO

In this work, we analyse the blistered function in wing vein development by studying genetic mosaics of mutant cells, genetic interactions with other genes affecting vein development and blistered expression in several mutant backgrounds. blistered encodes for a nuclear protein homologous to the mammalian Serum Response Factor and is expressed in presumptive intervein cells of third larval instar and pupal wing discs. Clones of blistered mutant cells proliferate normally but tend to grow along veins and always differentiate as vein tissue. These observations indicate that vein-determined wing cells show a particular behaviour that is responsible for their allocation to vein regions. We observe strong genetic interactions between blistered, veinlet and genes of the Ras signaling cascade. During disc proliferation, blistered expression is under the control of the Ras signal transduction pathway, but its expression is independent of veinlet. During the pupal period, blistered and veinlet expression become interdependent and mutually exclusive. These results link the activity of the Ras pathway to the process of early determination of intervein cells, by the transcriptional control of the blistered nuclear factor.


Assuntos
Proteínas de Drosophila , Drosophila/crescimento & desenvolvimento , Genes de Insetos/fisiologia , Mutação/fisiologia , Proteínas Quinases , Asas de Animais/citologia , Animais , Diferenciação Celular , Divisão Celular , Drosophila/genética , Receptores ErbB/genética , Receptores ErbB/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes ras/fisiologia , Larva , Pupa , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/fisiologia , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento
9.
Mech Dev ; 67(2): 203-13, 1997 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9392517

RESUMO

The adult wing of Drosophila consists of two wing surfaces apposed by their basal membranes which first came into contact following disc eversion at metamorphosis. Veins appear in these surfaces in a dorsal-ventral symmetric pattern, but are 'corrugated' (vein cells are more compacted and more pigmented) in a dorsal-ventral asymmetric pattern. We prevented dorsal-ventral contact apposition during wing imaginal disc morphogenesis by implanting fragments of discs into metamorphosing hosts. In these implants, longitudinal veins differentiate but with wider corrugation and in both surfaces. These results and those of genetic mosaics of mutants removing veins or causing ectopic veins reveal mutual dorso-ventral induction/inhibition at work to modulate the final vein differentiation pattern and corrugation.


Assuntos
Padronização Corporal , Drosophila/embriologia , Asas de Animais/irrigação sanguínea , Animais , Diferenciação Celular , Drosophila/genética , Metamorfose Biológica , Mosaicismo , Veias/citologia
10.
Mech Dev ; 53(2): 209-21, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8562423

RESUMO

The gene extramacrochaetae (emc) encodes a non-basic Helix-loop-helix (HLH) protein that interacts and antagonises other basic-HLH proteins. The expression pattern of emc, and the phenotype of lethal emc alleles indicate that this gene is operative in several developmental processes. Here we study the requirements for emc during cell proliferation and vein differentiation in the wing. Mosaic analysis of hypomorphic conditions of emc reveals the tendency of mutant cells to proliferate along the veins as long stripes. Large clones abuting two adjacent veins obliterate the corresponding inter-vein, affecting the size and shape of the whole wing. Thus, the emc gene participates in the control of cell proliferation within inter-vein regions in the wing. Similar effects were found in the haltere and in the leg. The behavior of emc cells in genetic mosaics indicate that (1) proliferation is locally controlled within inter-vein sectors, (2) cells proliferate according to their genetic activity along preferential positions in the wing morphogenetic landscape and (3) cell proliferation in the wing is integrated by 'accommodation' between mutant and wild type cells.


Assuntos
Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes de Insetos , Sequências Hélice-Alça-Hélice , Asas de Animais/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Divisão Celular/genética , Código Genético , Genótipo , Morfogênese , Mosaicismo , Mutação , Fenótipo , Asas de Animais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...