Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 131: 62-76, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38815936

RESUMO

Extracellular matrix proteins play crucial roles in the formation of mineralized tissues like bone and teeth via multifunctional mechanisms. In tooth enamel, ameloblastin (Ambn) is one such multifunctional extracellular matrix protein implicated in cell signaling and polarity, cell adhesion to the developing enamel matrix, and stabilization of prismatic enamel morphology. To provide a perspective for Ambn structure and function, we begin this review by describing dental enamel and enamel formation (amelogenesis) followed by a description of enamel extracellular matrix. We then summarize the established domains and motifs in Ambn protein, human amelogenesis imperfecta cases, and genetically engineered mouse models involving mutated or null Ambn. We subsequently delineate in silico, in vitro, and in vivo evidence for the amphipathic helix in Ambn as a proposed cell-matrix adhesive and then more recent in vitro evidence for the multitargeting domain as the basis for dynamic interactions of Ambn with itself, amelogenin, and membranes. The multitargeting domain facilitates tuning between Ambn-membrane interactions and self/co-assembly and supports a likely overall role for Ambn as a matricellular protein. We anticipate that this review will enhance the understanding of multifunctional matrix proteins by consolidating diverse mechanisms through which Ambn contributes to enamel extracellular matrix mineralization.


Assuntos
Amelogênese Imperfeita , Amelogênese , Proteínas do Esmalte Dentário , Esmalte Dentário , Matriz Extracelular , Humanos , Animais , Proteínas do Esmalte Dentário/metabolismo , Proteínas do Esmalte Dentário/genética , Amelogênese/genética , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/metabolismo , Amelogênese Imperfeita/patologia , Camundongos , Esmalte Dentário/metabolismo , Esmalte Dentário/química , Matriz Extracelular/metabolismo , Amelogenina/metabolismo , Amelogenina/genética , Amelogenina/química , Adesão Celular
2.
ACS Biomater Sci Eng ; 9(4): 1834-1842, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35068157

RESUMO

Amelogenin (Amel) and ameloblastin (Ambn) are two primary extracellular enamel matrix proteins that play crucial roles for proper thickness, prismatic structure, and robust mechanical properties. Previous studies have shown that Amel and Ambn bind to each other, but the effect of their coassembly on the nucleation of hydroxyapatite (HAP) is unclear. Here, we systematically investigated the coassembly of recombinant mouse Amel and Ambn in various ratios using in situ atomic force microscopy, dynamic light scattering, and transmission electron microscopy. The size of protein particles decreased as the Ambn:Amel ratio increased. To define the coassembly domain on Ambn, we used Ambn-derived peptides and Ambn variants to examine their effects on the amelogenin particle size distribution. We found that the peptide sequence encoded by exon 5 of Ambn affected Amel self-assembly but the variant lacking this sequence did not have any effect on Amel self-assembly. Furthermore, through monitoring the pH change in bulk mineralization solution, we tracked the nucleation behavior of HAP in the presence of Ambn and Amel and found that their coassemblies at different ratios showed varying abilities to stabilize amorphous calcium phosphate. These results demonstrated that Ambn and Amel coassemble with each other via a motif within the sequence encoded by exon 5 of Ambn and cooperate in regulating the nucleation of HAP crystals, enhancing our understanding of the important role of enamel matrix proteins in amelogenesis.


Assuntos
Amelogênese , Durapatita , Animais , Camundongos , Amelogênese/genética , Amelogenina/genética , Amelogenina/química , Amelogenina/metabolismo
3.
Front Physiol ; 13: 1069519, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531170

RESUMO

The distinct morphology adopted by ameloblasts during amelogenesis is highly stage specific and involved intimately with the development of a hierarchical enamel microstructure. The molecular mechanisms that govern the development of an elongated and polarized secretory ameloblast morphology and the potential roles played by the enamel matrix proteins in this process are not fully understood. Thus far, the in vitro models that have been developed to mimic these early cell-matrix interactions have either been unable to demonstrate direct morphological change or have failed to adapt across ameloblast cell lines. Here, we use a recently established 3D cell culture model to examine the interactions between HAT-7 cells and the major enamel matrix proteins, amelogenin and ameloblastin. We demonstrate that HAT-7 cells selectively respond to functional EMPs in culture by forming clusters of tall cells. Aspect ratio measurements from three-dimensional reconstructions reveal that cell elongation is 5-times greater in the presence of EMPs when compared with controls. Using confocal laser scanning microscopy, we observe that these clusters are polarized with asymmetrical distributions of Par-3 and claudin-1 proteins. The behavior of HAT-7 cells in 3D culture with EMPs is comparable with that of ALC and LS-8 cells. The fact that the 3D model presented here is tunable with respect to gel substrate composition and ameloblast cell type highlights the overall usefulness of this model in studying ameloblast cell morphology in vitro.

4.
Mol Biol Evol ; 39(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36161489

RESUMO

To investigate correlation between the ameloblastin (Ambn) amino acid sequence and the emergence of prismatic enamel, a notable event in the evolution of ectodermal hard tissues, we analyzed Ambn sequences of 53 species for which enamel microstructures have been previously reported. We found that a potential amphipathic helix (AH) within the sequence encoded by Exon 5 of Ambn appeared in species with prismatic enamel, with a few exceptions. We studied this correlation by investigating synthetic peptides from different species. A blue shift in fluorescence spectroscopy suggested that the peptides derived from mammalian Ambn interacted with liposomes. A downward shift at 222 nm in circular dichroism spectroscopy of the peptides in the presence of liposomes suggested that the peptides of mammals with prismatic enamel underwent a transition from disordered to helical structure. The peptides of species without prismatic enamel did not show similar secondary structural changes in the presence of liposomes. Peptides of mammals with prismatic enamel caused liposome leakage and inhibited LS8 and ALC cell spreading regulated by full-length Ambn. RT-PCR showed that AH is involved in Ambn's regulation of cell polarization genes: Vangl2, Vangl1, Prickle1, ROCK1, ROCK2, and Par3. Our comprehensive sequence analysis clearly demonstrates that AH motif is closely related to the emergence of enamel prismatic structure, providing insight into the evolution of complex enamel microstructure. We speculate that the AH motif evolved in mammals to interact with cell membrane, triggering signaling pathways required for specific changes in cell morphology associated with the formation of enamel prismatic structure.


Assuntos
Lipossomos , Mamíferos , Animais , Sequência de Aminoácidos , Éxons
5.
Front Physiol ; 11: 622086, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424645

RESUMO

Macromolecular assembly of extracellular enamel matrix proteins (EMPs) is intimately associated with the nucleation, growth, and maturation of highly organized hydroxyapatite crystals giving rise to healthy dental enamel. Although the colocalization of two of the most abundant EMPs amelogenin (Amel) and ameloblastin (Ambn) in molar enamel has been established, the evidence toward their interaction is scarce. We used co-immunoprecipitation (co-IP) to show evidence of direct molecular interactions between recombinant and native Amel and Ambn. Ambn fragments containing Y/F-x-x-Y/L/F-x-Y/F self-assembly motif were isolated from the co-IP column and characterized by mass spectroscopy. We used recombinant Ambn (rAmbn) mutants with deletion of exons 5 and 6 as well as Ambn derived synthetic peptides to demonstrate that Ambn binds to Amel via its previously identified Y/F-x-x-Y/L/F-x-Y/F self-assembly motif at the N-terminus of its exon 5 encoded region. Using an N-terminal specific anti-Ambn antibody, we showed that Ambn N-terminal fragments colocalized with Amel from secretory to maturation stages of enamel formation in a single section of developing mouse incisor, and closely followed mineral patterns in enamel rod interrod architecture. We conclude that Ambn self-assembly motif is involved in its interaction with Amel in solution and that colocalization between the two proteins persists from secretory to maturation stages of amelogenesis. Our in vitro and in situ data support the notion that Amel and Ambn may form heteromolecular assemblies that may perform important physiological roles during enamel formation.

6.
Methods Mol Biol ; 1922: 219-228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838580

RESUMO

Quantitative co-localization analysis, combined with other in vivo and in vitro techniques, can provide valuable information about the interaction and cooperative function of two proteins. Here we describe in detail the technique of quantitative co-localization analysis of two enamel matrix proteins, amelogenin and ameloblastin, in developing mouse enamel.


Assuntos
Amelogenina/análise , Proteínas do Esmalte Dentário/análise , Esmalte Dentário/química , Imuno-Histoquímica/métodos , Animais , Esmalte Dentário/crescimento & desenvolvimento , Camundongos , Inclusão em Parafina/métodos , Coloração e Rotulagem/métodos
7.
Methods Mol Biol ; 1922: 229-236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838581

RESUMO

Ameloblastin is the second most abundant enamel matrix protein, and is thought to be essential for ameloblast cell polarization, cell adhesion, and enamel mineralization. However, studies of ameloblastin's function and its molecular mechanism have been limited due to difficulty in obtaining recombinant ameloblastin in vitro. Here, we present a protocol for successful ameloblastin expression and purification in E. coli.


Assuntos
Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/isolamento & purificação , Escherichia coli/genética , Animais , Cromatografia Líquida de Alta Pressão/métodos , Clonagem Molecular/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Expressão Gênica , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...