Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zookeys ; 1123: 31-45, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36762038

RESUMO

We describe six datasets that contain GPS and accelerometer data of 202 Eurasian oystercatchers (Haematopusostralegus) spanning the period 2008-2021. Birds were equipped with GPS trackers in breeding and wintering areas in the Netherlands and Belgium. We used GPS trackers from the University of Amsterdam Bird Tracking System (UvA-BiTS) for several study purposes, including the study of space use during the breeding season, habitat use and foraging behaviour in the winter season, and impacts of human disturbance. To enable broader usage, all data have now been made open access. Combined, the datasets contain 6.0 million GPS positions, 164 million acceleration measurements and 7.0 million classified behaviour events (i.e., flying, walking, foraging, preening, and inactive). The datasets are deposited on the research repository Zenodo, but are also accessible on Movebank and as down-sampled occurrence datasets on the Global Biodiversity Information Facility (GBIF) and Ocean Biodiversity Information System (OBIS).

2.
Mar Pollut Bull ; 97(1-2): 294-308, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26119627

RESUMO

We studied short-term changes in macrozoobenthos in a 20m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were estimated with a hydrodynamic model. Two years after the cessation of sand extraction, macrozoobenthic biomass increased fivefold in the deepest areas. Species composition changed significantly and white furrow shell (Abra alba) became abundant. Several sediment characteristics also changed significantly in the deepest parts. Macrozoobenthic species composition and biomass significantly correlated with time after cessation of sand extraction, sediment and hydrographical characteristics. Ecosystem-based landscaped sand bars were found to be effective in influencing sediment characteristics and macrozoobenthic assemblage. Significant changes in epifauna occurred in deepest parts in 2012 which coincided with the highest sedimentation rate. We recommend continuing monitoring to investigate medium and long-term impacts.


Assuntos
Biodiversidade , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Dióxido de Silício , Animais , Biomassa , Bivalves , Ecossistema , Meio Ambiente
3.
PLoS One ; 8(9): e74129, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066103

RESUMO

Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar's detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer's accuracy in determining a bird's transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50 ± 0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising tracking algorithms.


Assuntos
Aves/fisiologia , Radar , Migração Animal/fisiologia , Animais , Voo Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...