Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38621234

RESUMO

The last five years have seen impressive progress in deep learning models applied to protein research. Most notably, sequence-based structure predictions have seen transformative gains in the form of AlphaFold2 and related approaches. Millions of missense protein variants in the human population lack annotations, and these computational methods are a valuable means to prioritize variants for further analysis. Here, we review the recent progress in deep learning models applied to the prediction of protein structure and protein variants, with particular emphasis on their implications for human genetics and health. Improved prediction of protein structures facilitates annotations of the impact of variants on protein stability, protein-protein interaction interfaces, and small-molecule binding pockets. Moreover, it contributes to the study of host-pathogen interactions and the characterization of protein function. As genome sequencing in large cohorts becomes increasingly prevalent, we believe that better integration of state-of-the-art protein informatics technologies into human genetics research is of paramount importance.

2.
PLoS Comput Biol ; 19(3): e1010200, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36952569

RESUMO

One of the main obstacles to the successful treatment of cancer is the phenomenon of drug resistance. A common strategy to overcome resistance is the use of combination therapies. However, the space of possibilities is huge and efficient search strategies are required. Machine Learning (ML) can be a useful tool for the discovery of novel, clinically relevant anti-cancer drug combinations. In particular, deep learning (DL) has become a popular choice for modeling drug combination effects. Here, we set out to examine the impact of different methodological choices on the performance of multimodal DL-based drug synergy prediction methods, including the use of different input data types, preprocessing steps and model architectures. Focusing on the NCI ALMANAC dataset, we found that feature selection based on prior biological knowledge has a positive impact-limiting gene expression data to cancer or drug response-specific genes improved performance. Drug features appeared to be more predictive of drug response, with a 41% increase in coefficient of determination (R2) and 26% increase in Spearman correlation relative to a baseline model that used only cell line and drug identifiers. Molecular fingerprint-based drug representations performed slightly better than learned representations-ECFP4 fingerprints increased R2 by 5.3% and Spearman correlation by 2.8% w.r.t the best learned representations. In general, fully connected feature-encoding subnetworks outperformed other architectures. DL outperformed other ML methods by more than 35% (R2) and 14% (Spearman). Additionally, an ensemble combining the top DL and ML models improved performance by about 6.5% (R2) and 4% (Spearman). Using a state-of-the-art interpretability method, we showed that DL models can learn to associate drug and cell line features with drug response in a biologically meaningful way. The strategies explored in this study will help to improve the development of computational methods for the rational design of effective drug combinations for cancer therapy.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Aprendizado de Máquina
3.
J Integr Bioinform ; 19(3)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36017668

RESUMO

Machine learning (ML) is increasingly being used to guide drug discovery processes. When applying ML approaches to chemical datasets, molecular descriptors and fingerprints are typically used to represent compounds as numerical vectors. However, in recent years, end-to-end deep learning (DL) methods that can learn feature representations directly from line notations or molecular graphs have been proposed as alternatives to using precomputed features. This study set out to investigate which compound representation methods are the most suitable for drug sensitivity prediction in cancer cell lines. Twelve different representations were benchmarked on 5 compound screening datasets, using DeepMol, a new chemoinformatics package developed by our research group, to perform these analyses. The results of this study show that the predictive performance of end-to-end DL models is comparable to, and at times surpasses, that of models trained on molecular fingerprints, even when less training data is available. This study also found that combining several compound representation methods into an ensemble can improve performance. Finally, we show that a post hoc feature attribution method can boost the explainability of the DL models.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Descoberta de Drogas/métodos
4.
Brief Bioinform ; 22(1): 360-379, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31950132

RESUMO

Predicting the sensitivity of tumors to specific anti-cancer treatments is a challenge of paramount importance for precision medicine. Machine learning(ML) algorithms can be trained on high-throughput screening data to develop models that are able to predict the response of cancer cell lines and patients to novel drugs or drug combinations. Deep learning (DL) refers to a distinct class of ML algorithms that have achieved top-level performance in a variety of fields, including drug discovery. These types of models have unique characteristics that may make them more suitable for the complex task of modeling drug response based on both biological and chemical data, but the application of DL to drug response prediction has been unexplored until very recently. The few studies that have been published have shown promising results, and the use of DL for drug response prediction is beginning to attract greater interest from researchers in the field. In this article, we critically review recently published studies that have employed DL methods to predict drug response in cancer cell lines. We also provide a brief description of DL and the main types of architectures that have been used in these studies. Additionally, we present a selection of publicly available drug screening data resources that can be used to develop drug response prediction models. Finally, we also address the limitations of these approaches and provide a discussion on possible paths for further improvement. Contact:  mrocha@di.uminho.pt.


Assuntos
Aprendizado Profundo , Resistencia a Medicamentos Antineoplásicos , Genômica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Variantes Farmacogenômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...