Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 326(Pt A): 116623, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36368200

RESUMO

The wine industry produces significant amounts of by-products and residues that are not properly managed, posing an environmental problem. Grape must surplus, vine shoots, and wine lees have the potential to be used as renewable resources for the production of energy and chemicals. Metabolic engineering efforts have established Saccharomyces cerevisiae as an efficient microbial cell factory for biorefineries. Current biorefineries designed for producing multiple products often rely on just one feedstock, but the bioeconomy would clearly benefit if these biorefineries could efficiently convert multiple feedstocks. Moreover, to reduce the environmental impact of fossil fuel consumption and maximize production economics, a biorefinery should be capable to supplement the manufacture of biofuel with the production of high-value products. This study proposes an integrated approach for the valorization of diverse wastes resulting from winemaking processes through the biosynthesis of xylitol and ethanol. Using genetically modified S. cerevisiae strains, the xylose-rich hemicellulosic fraction of hydrothermally pretreated vine shoots was converted into xylitol, and the cellulosic fraction was used to produce bioethanol. In addition, grape must, enriched in sugars, was efficiently used as a low-cost source for yeast propagation. The production of xylitol was optimized, in a Simultaneous Saccharification and Fermentation process configuration, by adjusting the inoculum size and enzyme loading. Furthermore, a yeast strain displaying cellulases in the cell surface was applied for the production of bioethanol from the glucan-rich cellulosic. With the addition of grape must and/or wine lees, high ethanol concentrations were reached, which are crucial for the economic feasibility of distillation. This integrated multi-feedstock valorization provides a synergistic alternative for converting a range of winery wastes and by-products into biofuel and an added-value chemical while decreasing waste released to the environment.


Assuntos
Saccharomyces cerevisiae , Vitis , Saccharomyces cerevisiae/metabolismo , Biocombustíveis , Xilitol/metabolismo , Xilose/metabolismo , Fermentação , Etanol/metabolismo
2.
Biotechnol Adv ; 47: 107697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33508428

RESUMO

The implementation of biorefineries for a cost-effective and sustainable production of energy and chemicals from renewable carbon sources plays a fundamental role in the transition to a circular economy. The US Department of Energy identified a group of key target compounds that can be produced from biorefinery carbohydrates. In 2010, this list was revised and included organic acids (lactic, succinic, levulinic and 3-hydroxypropionic acids), sugar alcohols (xylitol and sorbitol), furans and derivatives (hydroxymethylfurfural, furfural and furandicarboxylic acid), biohydrocarbons (isoprene), and glycerol and its derivatives. The use of substrates like lignocellulosic biomass that impose harsh culture conditions drives the quest for the selection of suitable robust microorganisms. The yeast Saccharomyces cerevisiae, widely utilized in industrial processes, has been extensively engineered to produce high-value chemicals. For its robustness, ease of handling, genetic toolbox and fitness in an industrial context, S. cerevisiae is an ideal platform for the founding of sustainable bioprocesses. Taking these into account, this review focuses on metabolic engineering strategies that have been applied to S. cerevisiae for converting renewable resources into the previously identified chemical targets. The heterogeneity of each chemical and its manufacturing process leads to inevitable differences between the development stages of each process. Currently, 8 of 11 of these top value chemicals have been already reported to be produced by recombinant S. cerevisiae. While some of them are still in an early proof-of-concept stage, others, like xylitol or lactic acid, are already being produced from lignocellulosic biomass. Furthermore, the constant advances in genome-editing tools, e.g. CRISPR/Cas9, coupled with the application of innovative process concepts such as consolidated bioprocessing, will contribute for the establishment of S. cerevisiae-based biorefineries.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Biomassa , Carboidratos , Edição de Genes , Saccharomyces cerevisiae/genética
3.
Bioengineered ; 11(1): 883-903, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32799606

RESUMO

The biorefinery concept, consisting in using renewable biomass with economical and energy goals, appeared in response to the ongoing exhaustion of fossil reserves. Bioethanol is the most prominent biofuel and has been considered one of the top chemicals to be obtained from biomass. Saccharomyces cerevisiae, the preferred microorganism for ethanol production, has been the target of extensive genetic modifications to improve the production of this alcohol from renewable biomasses. Additionally, S. cerevisiae strains from harsh industrial environments have been exploited due to their robust traits and improved fermentative capacity. Nevertheless, there is still not an optimized strain capable of turning second generation bioprocesses economically viable. Considering this, and aiming to facilitate and guide the future development of effective S. cerevisiae strains, this work reviews genetic engineering strategies envisioning improvements in 2nd generation bioethanol production, with special focus in process-related traits, xylose consumption, and consolidated bioprocessing. Altogether, the genetic toolbox described proves S. cerevisiae to be a key microorganism for the establishment of a bioeconomy, not only for the production of lignocellulosic bioethanol, but also having potential as a cell factory platform for overall valorization of renewable biomasses.


Assuntos
Etanol/metabolismo , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Biomassa , Fermentação/fisiologia
4.
Bioresour Technol ; 267: 481-491, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30041142

RESUMO

In this work, the industrial Saccharomyces cerevisiae PE-2 strain, presenting innate capacity for xylitol accumulation, was engineered for xylitol production by overexpression of the endogenous GRE3 gene and expression of different xylose reductases from Pichia stipitis. The best-performing GRE3-overexpressing strain was capable to produce 148.5 g/L of xylitol from high xylose-containing media, with a 0.95 g/g yield, and maintained close to maximum theoretical yields (0.89 g/g) when tested in non-detoxified corn cob hydrolysates. Furthermore, a successful integrated strategy was developed for the production of xylitol from whole slurry corn cob in a presaccharification and simultaneous saccharification and fermentation process (15% solid loading and 36 FPU) reaching xylitol yield of 0.93 g/g and a productivity of 0.54 g/L·h. This novel approach results in an intensified valorization of lignocellulosic biomass for xylitol production in a fully integrated process and represents an advance towards a circular economy.


Assuntos
Saccharomyces cerevisiae , Xilitol/química , Zea mays/metabolismo , Etanol , Fermentação , Xilose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...