Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35632173

RESUMO

Fifth generation (5G) communication systems deploy a massive MIMO technique to enhance gain and spatial multiplexing in arrays of 16 to 128 antennas. In these arrays, it is critical to isolate the adjacent antennas to prevent unwanted interaction between them. Fifth generation absorbers, in this regard, are the recent interest of many researchers nowadays. The authors present a dual-band novel metamaterial-based 5G absorber. The absorber operates at 24 GHz and 28 GHz and is composed of symmetric meander lines connected through a transmission line. An analytical model used to calculate the total number of required meander lines to design the absorber is delineated. The analytical model is based on the total inductance offered by the meander line structure in an impedance-matched electronic circuit. The proposed absorber works on the principal of resonance and absorbs two 5G bands (24 GHz and 28 GHz). A complete angular stability analysis was carried out prior to experiments for both transverse electric (TE) and transverse magnetic (TM) polarizations. Further, the resonance conditions are altered by changing the substrate thickness and incidence angle of the incident fields to demonstrate the functionality of the absorber. The comparison between simulated and measured results shows that such an absorber would be a strong candidate for the absorption in millimetre-wave array antennas, where elements are placed in proximity within compact 5G devices.

2.
J Opt Soc Am A Opt Image Sci Vis ; 39(1): 136-142, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200983

RESUMO

The inherent bandwidth limitations make it quite challenging to achieve the wideband response of metamaterial absorbers. In this paper, a metamaterial absorber based on triangular metallic rings has been proposed to attain wideband absorption (>90%) in the wavelength span of 400-750 nm. The absorber is constituted of periodically placed unit cells, where each unit cell contains three concentric triangular chromium metal rings. The absorption of the design remains stable (above 70%) over a wide range of incidence obliquity (0°-60°) under transverse electric (TE) and transverse magnetic (TM) polarization. Further, the absorber shows polarization-insensitive behavior over different polarization states. The low-cost and thermally endurable chromium metal, wide absorption, and wide-angle stability make the proposed absorber a suitable candidate for applications like solar energy harvesting, solar detectors, solar thermal photovoltaics, and photonic devices.

3.
Appl Opt ; 60(29): 9160-9166, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34623998

RESUMO

Terahertz (THz) metamaterial absorbers have realized a prodigious reputation due to the limitation of natural absorbing materials in this range. Getting wideband absorption characteristics is challenging and arduous, especially in the THz band. Self-similar repeated fractal elements offer a promising solution to attain broadband absorption response due to their inherent multiple resonance characteristics. Therefore, by captivating the advantage of fractal geometry, we proposed a dual and wideband meta-absorber operating in the THz regime. The metamaterial absorber design comprises the assembly of self-similar square-shaped blocks arranged in a specific pattern to construct the fractal geometry. The proposed THz absorber demonstrates 90% absorption under normal incident waves for two operating bands from 9.5-10.55 THz and 12.3-13.35 THz. The suggested metamaterial absorber also shows good and stable absorption responses under different oblique incidence angles for transverse electric (TE) and transverse magnetic (TM) wave polarization. Moreover, this absorber manifests over 85% absorptivity in its entire operating range (9-14 THz) under the incidence angle of 60° and 70° for TM mode. Furthermore, it gives a polarization-insensitive behavior under the effect of different polarization angles. This kind of wideband absorber catches fascinating applications in THz detection, imaging, cloaking, and optoelectronic devices.

4.
Appl Opt ; 59(34): 10912-10919, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361912

RESUMO

This paper investigates the absorption features of the gallium-doped zinc oxide (GZO) nanowire-based metamaterial absorber. The absorption spectrum was analyzed in the near-infrared regime (NIR) and short-wavelength infrared regime (SWIR). The wideband absorption was observed in the NIR and SWIR. The effect of the volume fraction of the nanorod and thickness of the metamaterial was depicted on the absorption spectrum. Observations reveal that at a lower volume fraction of GZO, absorption is noticed at SWIR of the spectrum; however, for a large volume fraction, blueshift in the absorption band is noticed, and absorption is found in the NIR of the spectrum. Further, a larger volume fraction of GZO attributes to the property of hyperbolic metamaterial. Moreover, the figure of merit and operational bandwidth are analyzed to optimize the absorption results. Such an absorber would be useful for energy harvesting, SWIR photodetectors, and imaging applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...