Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4-1): 044908, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755878

RESUMO

Using a discrete element method, we investigate the phenomenon of geometric cohesion in granular systems composed of star-shaped particles with 3 to 13 arms. This was done by analyzing the stability of columns built with these particles and by studying the microstructure of these columns in terms of density and connectivity. We find that systems composed of star-shaped particles can exhibit geometric cohesion (i.e., a solidlike behavior, in the absence of adhesive forces between the grains), depending on the shape of the particles and the friction between them. This phenomenon is observed up to a given critical size of the system, from which a transition to a metastable behavior takes place. We also have evidence that geometric cohesion is closely linked to the systems' connectivity and especially to the capability of forming interlocked interactions (i.e., multicontact interactions that hinder the relative rotation of the grains). Our results contribute to the understanding of the interesting and potentially useful phenomenon of geometric cohesion. In addition, our work supplements an important set of experimental observations and sheds light on the complex behavior of real, three-dimensional, granular systems.

2.
Phys Rev E ; 109(4): L042901, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755875

RESUMO

Oscillatory-driven amorphous materials forget their initial configuration and converge to limit cycles. Here we investigate this memory loss under a nonquasistatic drive in a minimal model system, with quenched disorder and memory encoded in a spatial pattern, where oscillating protocols are formally replaced by a positive-velocity drive. We consider an elastic line driven athermally in a quenched disorder with biperiodic boundary conditions and tunable system size, thus controlling the area swept by the line per cycle as would the oscillation amplitude. The convergence to disorder-dependent limit cycle is strongly coupled to the nature of its velocity dynamics depending on system size. Based on the corresponding phase diagram, we propose a generic scenario for memory formation in disordered systems under finite driving rate.

3.
Phys Rev E ; 108(4-1): 044901, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37978664

RESUMO

Very soft grain assemblies have unique shape-changing capabilities that allow them to be compressed far beyond the rigid jammed state by filling void spaces more effectively. However, accurately following the formation of these systems by monitoring the creation of new contacts, monitoring the changes in grain shape, and measuring grain-scale stresses is challenging. We developed an experimental method that overcomes these challenges and connects their microscale behavior to their macroscopic response. By tracking the local strain energy during compression, we reveal a transition from granular-like to continuous-like material. Mean contact geometry is shown to vary linearly with the packing fraction, which is supported by a mean field approximation. We also validate a theoretical framework which describes the compaction from a local view. Our experimental framework provides insights into the granular micromechanisms and opens perspectives for rheological analysis of highly deformable grain assemblies in various fields ranging from biology to engineering.

4.
Phys Rev E ; 106(2): L022901, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109894

RESUMO

In this Letter, we report on an experimental study which analyzes the compressive behavior of two-dimensional bidisperse granular assemblies made of soft (hyperelastic) and hard grains in varying proportions (κ is the portion of soft grains). By means of a recently developed uniaxial compression setup [Vu and Barés, Phys. Rev. E 100, 042907 (2019)]2470-004510.1103/PhysRevE.100.042907 and using an advanced digital image correlation method, we follow, beyond the jamming point, the evolution of the main mechanical observables, from the global scale down to the strain field inside each deformable grain. First, we validate experimentally and extend to the uniaxial case a recently proposed micromechanical compaction model linking the evolution of the applied pressure P to the packing fraction ϕ [Cantor et al., Phys. Rev. Lett. 124, 208003 (2020)]0031-900710.1103/PhysRevLett.124.208003. Second, we reveal two different linear regimes depending on whether the system is above or below a crossover strain unraveling a transition from a discrete to a continuous-like system. Third, the evolution of these linear laws is found to vary linearly with κ. These results provide a comprehensive experimental and theoretical framework that can now be extended to a more general class of polydisperse soft granular systems.

5.
ACS Appl Bio Mater ; 5(6): 3075-3085, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584545

RESUMO

The aim of this work was the development of injectable radio-opaque and macroporous calcium phosphate cement (CPC) to be used as a bone substitute for the treatment of pathologic vertebral fractures. A CPC was first rendered radio-opaque by the incorporation of zirconium dioxide (ZrO2). In order to create macroporosity, poly lactic-co-glycolic acid (PLGA) microspheres around 100 µm were homogeneously incorporated into the CPC as observed by scanning electron microscopy. Physicochemical analyses by X-ray diffraction and Fourier transform infrared spectroscopy confirmed the brushite phase of the cement. The mechanical properties of the CPC/PLGA cement containing 30% PLGA (wt/wt) were characterized by a compressive strength of 2 MPa and a Young's modulus of 1 GPa. The CPC/PLGA exhibited initial and final setting times of 7 and 12 min, respectively. Although the incorporation of PLGA microspheres increased the force necessary to inject the cement and decreased the percentage of injected mass as a function of time, the CPC/PLGA appeared fully injectable at 4 min. Moreover, in comparison with CPC, CPC/PLGA showed a full degradation in 6 weeks (with 100% mass loss), and this was associated with an acidification of the medium containing the CPC/PLGA sample (pH of 3.5 after 6 weeks). A cell viability test validated CPC/PLGA biocompatibility, and in vivo analyses using a bone defect assay in the caudal vertebrae of Wistar rats showed the good opacity of the CPC through the tail and a significant increased degradation of the CPC/PLGA cement a month after implantation. In conclusion, this injectable CPC scaffold appears to be an interesting material for bone substitution.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Animais , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Ratos Wistar
6.
Soft Matter ; 18(2): 312-321, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34878475

RESUMO

This paper analyzes the compaction behavior of assemblies composed of soft (elastic) spherical particles beyond the jammed state, using three-dimensional non-smooth contact dynamic simulations. The assemblies of particles are characterized using the evolution of the packing fraction, the coordination number, and the von Misses stress distribution within the particles as the confining stress increases. The packing fraction increases and tends toward a maximum value close to 1, and the mean coordination number increases as a square root of the packing fraction. As the confining stress increases, a transition is observed from a granular-like material with exponential tails of the shear stress distributions to a continuous-like material characterized by Gaussian-like distributions of the shear stresses. We develop an equation that describes the evolution of the packing fraction as a function of the applied pressure. This equation, based on the micromechanical expression of the granular stress tensor, the limit of the Hertz contact law for small deformation, and the power-law relation between the packing fraction and the coordination of the particles, provides good predictions from the jamming point up to very high densities without the need for tuning any parameters.

7.
Phys Rev E ; 103(6-1): 062902, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271662

RESUMO

We analyze the isotropic compaction of assemblies composed of soft pentagons interacting through classical Coulomb friction via numerical simulations. The effect of the initial particle shape is discussed by comparing packings of pentagons with packings of soft circular particles. We characterize the evolution of the packing fraction, the elastic modulus, and the microstructure (particle rearrangement, connectivity, contact force, and particle stress distributions) as a function of the applied stresses. Both systems behave similarly: the packing fraction increases and tends asymptotically to a maximum value ϕ_{max}, where the bulk modulus diverges. At the microscopic scale we show that particle rearrangements occur even beyond the jammed state, the mean coordination increases as a square root of the packing fraction, and the force and stress distributions become more homogeneous as the packing fraction increases. Soft pentagons experience larger particle rearrangements than circular particles, and such behavior decreases proportionally to the friction. Interestingly, the friction between particles also contributes to a better homogenization of the contact force network in both systems. From the expression of the granular stress tensor we develop a model that describes the compaction behavior as a function of the applied pressure, the Young modulus, and the initial shape of the particles. This model, settled on the joint evolution of the particle connectivity and the contact stress, provides outstanding predictions from the jamming point up to very high densities.

8.
Phys Rev E ; 103(5-1): 053001, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134297

RESUMO

We examine the effect of small, spatially localized excitations applied periodically in different manners, on the crackling dynamics of a brittle crack driven slowly in a heterogeneous solid. When properly adjusted, these excitations are observed to radically modify avalanche statistics and considerably limit the magnitude of the largest events. Surprisingly, this does not require information on the front loading state at the time of excitation; applying it either at a random location or at the most loaded point gives the same results. Subsequently, we unravel how the excitation amplitude, spatial extent, and frequency govern the effect. We find that the excitation efficiency is ruled by a single reduced parameter, namely the injected power per unit front length; the suppression of extreme avalanches is maximum at a well-defined optimal value of this control parameter. analysis opens another way to control the largest events in crackling dynamics. Beyond fracture problems, it may be relevant for crackling systems described by models of the same universality class, such as the wetting of heterogeneous substrates or magnetic walls in amorphous magnets.

9.
Mater Sci Eng C Mater Biol Appl ; 118: 111525, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255078

RESUMO

Synthetic polymers are widely employed for bone tissue engineering due to their tunable physical properties and biocompatibility. Inherently, most of these polymers display poor antimicrobial properties. Infection at the site of implantation is a major cause for failure or delay in bone healing process and the development of antimicrobial polymers is highly desired. In this study, silver nanoparticles (AgNps) were synthesized in polycaprolactone (PCL) solution by in-situ reduction and further extruded into PCL/AgNps filaments. Customized 3D structures were fabricated using the PCL/AgNps filaments through 3D printing technique. As demonstrated by scanning electron microscopy, the 3D printed scaffolds exhibited interconnected porous structures. Furthermore, X-ray photoelectron spectroscopy analysis revealed the reduction of silver ions. Transmission electron microscopy along with energy-dispersive X-ray spectroscopy analysis confirmed the formation of silver nanoparticles throughout the PCL matrix. In vitro enzymatic degradation studies showed that the PCL/AgNps scaffolds displayed 80% degradation in 20 days. The scaffolds were cytocompatible, as assessed using hFOB cells and their antibacterial activity was demonstrated on Escherichia coli. Due to their interconnected porous structure, mechanical and antibacterial properties, these cytocompatible multifunctional 3D printed PCL/AgNps scaffolds appear highly suitable for bone tissue engineering.


Assuntos
Nanopartículas Metálicas , Engenharia Tecidual , Antibacterianos/farmacologia , Poliésteres , Impressão Tridimensional , Prata/farmacologia , Alicerces Teciduais
10.
Sci Rep ; 10(1): 22003, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319809

RESUMO

Hydrogen Evolution Reaction (HER) is an attractive technology for chemical conversion of energy. Replacement of platinum with inexpensive and stable electrocatalysts remains a major bottleneck hampering large-scale hydrogen production by using clean and renewable energy sources. Here, we report electrocatalytically active and ultra-stable Polymer-Derived Ceramics towards HER. We successfully prepared ultrathin silicon and carbon (Si-C) based ceramic systems supported on electrically conducting 2D reduced graphene oxide (rGO) nanosheets with promising HER activity by varying the nature and the composition of the ceramic with the inclusion of nitrogen, boron and oxygen. Our results suggest that oxygen-enriched Si-B-C-N/rGO composites (O-SiBCN/rGO) display the strongest catalytic activity leading to an onset potential and a Tafel slope of - 340 mV and ~ 120 mV dec-1 respectively. O-SiBCN/rGO electrodes display stability over 170 h with minimal increase of 14% of the overpotential compared to ~ 1700% for commercial platinum nanoparticles. Our study provides new insights on the performance of ceramics as affordable and robust HER catalysts calling for further exploration of the electrocatalytic activity of such unconventional materials.

11.
Phys Rev Lett ; 125(13): 138001, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034487

RESUMO

Shearing granular materials induces nonaffine displacements. Such nonaffine displacements have been studied extensively, and are known to correlate with plasticity and other mechanical features of amorphous packings. A well known example is shear transformation zones as captured by the local deviation from affine deformation, D_{min}^{2}, and their relevance to failure and stress fluctuations. We analyze sheared frictional athermal disc packings and show that there exists at least one additional mesoscopic transport mechanism that superimposes itself on top of local diffusive motion. We evidence this second transport mechanism in a homogeneous system via a diffusion tensor analysis and show that the trace of the diffusion tensor equals the classic D_{min}^{2} when this second mesoscopic transport is corrected for. The new transport mechanism is consistently observed over a wide range of volume fractions and even for particles with different friction coefficients and is consistently observed also upon shear reversal, hinting at its relevance for memory effects.

12.
Phys Rev E ; 102(3-1): 032904, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075867

RESUMO

We analyze the isotropic compaction of mixtures composed of rigid and deformable incompressible particles by the nonsmooth contact dynamics approach. The deformable bodies are simulated using a hyperelastic neo-Hookean constitutive law by means of classical finite elements. We characterize the evolution of the packing fraction, the elastic modulus, and the connectivity as a function of the applied stresses when varying the interparticle coefficient of friction. We show first that the packing fraction increases and tends asymptotically to a maximum value ϕ_{max}, which depends on both the mixture ratio and the interparticle friction. The bulk modulus is also shown to increase with the packing fraction and to diverge as it approaches ϕ_{max}. From the micromechanical expression of the granular stress tensor, we develop a model to describe the compaction behavior as a function of the applied pressure, the Young modulus of the deformable particles, and the mixture ratio. A bulk equation is also derived from the compaction equation. This model lays on the characterization of a single deformable particle under compression together with a power-law relation between connectivity and packing fraction. This compaction model, set by well-defined physical quantities, results in outstanding predictions from the jamming point up to very high densities and allows us to give a direct prediction of ϕ_{max} as a function of both the mixture ratio and the friction coefficient.

13.
Phys Rev E ; 101(6-1): 062903, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32688601

RESUMO

Granular packings of nonconvex or elongated particles can form freestanding structures like walls or arches. For some particle shapes, such as staples, the rigidity arises from interlocking of pairs of particles, but the origins of rigidity for noninterlocking particles remains unclear. We report on experiments and numerical simulations of sheared columns of "hexapods," particles consisting of three mutually orthogonal sphero-cylinders whose centers coincide. We vary the length-to-diameter aspect ratio, α, of the sphero-cylinders and subject the packings to quasistatic direct shear. For small α, we observe a finite yield stress. For large α, however, the column becomes rigid when sheared, supporting stresses that increase sharply with increasing strain. Analysis of x-ray microcomputed tomography (micro-CT) data collected during the shear reveals that the stiffening is associated with a tilted, oblate cluster of hexapods near the nominal shear plane in which particle deformation and average contact number both increase. Simulation results show that the particles are collectively under tension along one direction, even though they do not interlock pairwise. These tensions comes from contact forces carrying large torques, and they are perpendicular to the compressive stresses in the packing. They counteract the tendency to dilate, thus stabilizing the particle cluster.

14.
Mater Sci Eng C Mater Biol Appl ; 110: 110595, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204059

RESUMO

The aim of this work was to develop a bioresorbable, biodegradable and biocompatible synthetic polymer with good mechanical properties for bone tissue engineering applications. Polylactic acid (PLA) scaffolds were generated by 3D printing using the fused deposition modelling method, and reinforced by incorporation of graphene oxide (GO). Morphological analysis by scanning electron microscopy indicated that the scaffold average pore size was between 400 and 500 µm. Topography imaging revealed a rougher surface upon GO incorporation (Sa = 5.8 µm for PLA scaffolds, and of 9.9 µm for PLA scaffolds with 0.2% GO), and contact angle measurements showed a transition from a hydrophobic surface (pure PLA scaffolds) to a hydrophilic surface after GO incorporation. PLA thermomechanical properties were enhanced by GO incorporation, as shown by the 70 °C increase of the degradation peak (thermal gravimetric analysis). However, GO incorporation did not change significantly the melting point assessed by differential scanning calorimetry. Physicochemical analyses by X-ray diffraction and Raman spectroscopy confirmed the filler presence. Tensile testing demonstrated that the mechanical properties were improved upon GO incorporation (30% increase of the Young's modulus with 0.3% GO). Cell viability, attachment, proliferation and differentiation assays using MG-63 osteosarcoma cells showed that PLA/GO scaffolds were biocompatible and that they promoted cell proliferation and mineralization more efficiently than pure PLA scaffolds. In conclusion, this new 3D printed nanocomposite is a promising scaffold with adequate mechanical properties and cytocompatibility which may allow bone formation.


Assuntos
Osso e Ossos/metabolismo , Grafite/química , Osteoblastos/metabolismo , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Osso e Ossos/citologia , Linhagem Celular Tumoral , Humanos , Camundongos , Osteoblastos/citologia
15.
Granul Matter ; 22(1): 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929730

RESUMO

We describe here experiments on the mechanics of hydrogel particle packings from the Behringer lab, performed between 2012 and 2015. These experiments quantify the evolution of all contact forces inside soft particle packings exposed to compression, shear, and the intrusion of a large intruder. The experimental set-ups and processes are presented and the data are concomitantly published in a repository (Barés et al. in Dryad, Dataset 10.5061/dryad.6djh9w0x8, 2019).

16.
ACS Appl Bio Mater ; 3(4): 1865-1874, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025309

RESUMO

Here, we produced a synthetic polymer having adequate biocompatibility, biodegradability, and bioresorbability, as well as mechanical properties for applications in bone tissue engineering. We used the fused deposition modeling (FDM) based 3D printing approach in order to produce biomimetic biodegradable scaffolds made of polylactic acid (PLA). We strengthened these scaffolds by addition of exfoliated boron nitride (EBN) as filler. We demonstrated the presence of EBN by physicochemical analysis using Raman spectroscopy and X-ray diffraction (XRD). Using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), we found that EBN incorporation did not influence the transition temperature, but reduced the polymer crystallinity. Scanning electron microscopy for morphology evaluation showed a mean scaffold pore size of 500 µm. EBN incorporation did not affect the scaffold mechanical properties (tensile test), but modified the surface roughness. Moreover, contact angle quantification indicated that the surface of PLA/EBN scaffolds was hydrophilic and that of PLA scaffolds hydrophobic. Finally, the results of the cytotoxicity, cell attachment, and proliferation experiments using MG-63 and MC3T3 cells indicated that PLA scaffolds filled with EBN were nontoxic and compatible with osteoblastic cells and also promoted the scaffold mineralization by MG-63 cells. Altogether, our results suggest that this 3D printed nanocomposite scaffold is suitable for tissue engineering.

17.
Phys Rev Lett ; 123(15): 158001, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702280

RESUMO

We study the jamming phase diagram of sheared granular material using a novel Couette shear setup with a multiring bottom. The setup uses small basal friction forces to apply a volume-conserving linear shear with no shear band to a granular system composed of frictional photoelastic discs. The setup can generate arbitrarily large shear strain due to its circular geometry, and the shear direction can be reversed, allowing us to measure a feature that distinguishes shear-jammed from fragile states. We report systematic measurements of the stress, strain, and contact network structure at phase boundaries that have been difficult to access by traditional experimental techniques, including the yield stress curve and the jamming curve close to ϕ_{SJ}≈0.75, the smallest packing fraction supporting a shear-jammed state. We observe fragile states created under large shear strain over a range of ϕ<ϕ_{SJ}. We also find a transition in the character of the quasistatic steady flow centered around ϕ_{SJ} on the yield curve as a function of packing fraction. Near ϕ_{SJ}, the average contact number, fabric anisotropy, and nonrattler fraction all show a change of slope. Above ϕ_{F}≈0.7 the steady flow shows measurable deviations from the basal linear shear profile, and above ϕ_{b}≈0.78 the flow is localized in a shear band.

18.
Phys Rev E ; 100(4-1): 042907, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770891

RESUMO

We present the experimental studies of highly strained soft bidisperse granular systems made of hyperelastic and plastic particles. We explore the behavior of granular matter deep in the jammed state from local field measurement from the grain scale to the global scale. By means of a dedicated digital image correlation code and an accurate image recording method, we measure for each compression step the evolution of the particle geometries and their right Cauchy-Green strain tensor fields. We analyze the evolution of the usual macroscopic observables (stress, packing fraction, coordination, fraction of nonrattlers, etc.) along the compression process through the jamming point and far beyond. Analyzing the evolution of the local strain statistics, we evidence a crossover in the material behavior deep in the jammed state for both sorts of particles. We show that this crossover is due to a competition between material compression, dilation, and shear, so its position depends on the particle material. We argue that the strain field is a reliable observable to describe the evolution of a granular system through the jamming transition and deep in the dense packing state whatever the material behavior.

19.
Phys Rev E ; 100(2-1): 023001, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574622

RESUMO

Crack growth in heterogeneous materials sometimes exhibits crackling dynamics, made of successive impulselike events with specific scale-invariant time and size organization reminiscent of earthquakes. Here, we examine this dynamics in a model which identifies the crack front with a long-range elastic line driven in a random potential. We demonstrate that, under some circumstances, fracture grows intermittently, via scale-free impulse organized into aftershock sequences obeying the fundamental laws of statistical seismology. We examine the effects of the driving rate and system overall stiffness (unloading factor) onto the scaling exponents and cutoffs associated with the time and size organization. We unravel the specific conditions required to observe a seismiclike organization in the crack propagation problem. Beyond failure problems, implications of these results to other crackling systems are finally discussed.

20.
Phys Rev E ; 99(6-1): 062903, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330616

RESUMO

Using the contact dymanics method together with the finite element method, we simulate the uniaxial compression of assemblies of elastic cylinders. The numerical model accounts for finite deformations of the particles through the neo-Hookean constitutive equation and solid friction between the particles. A quantitative comparison with experiments carried out with centimetric rubberlike cylinders, with local deformations of the particles determined by image correlation, is proposed. We show that the simulations accurately capture the details of both the microstructure and the macroscopic behavior of the real granular system, demonstrating the relevancy of the numerical approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...