Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 2(5): 296-301, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10806481

RESUMO

In Drosophila photoreceptors, phospholipase C (PLC) and other signalling components form multiprotein structures through the PDZ scaffold protein INAD. Association between PLC and INAD is important for termination of responses to light; the underlying mechanism is, however, unclear. Here we report that the maintenance of large amounts of PLC in the signalling membranes by association with INAD facilitates response termination, and show that PLC functions as a GTPase-activating protein (GAP). The inactivation of the G protein by its target, the PLC, is crucial for reliable production of single-photon responses and for the high temporal and intensity resolution of the response to light.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Isoenzimas/metabolismo , Fosfolipases Tipo C/metabolismo , Visão Ocular/fisiologia , Animais , Drosophila , Regulação Enzimológica da Expressão Gênica , Resposta ao Choque Térmico/fisiologia , Isoenzimas/genética , Mutagênese/fisiologia , Técnicas de Patch-Clamp , Fenótipo , Fosfolipase C beta , Estimulação Luminosa , Células Fotorreceptoras de Invertebrados/enzimologia , Fosfolipases Tipo C/genética
2.
Eur J Biochem ; 249(1): 330-6, 1997 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-9363787

RESUMO

Signaling by guanine-nucleotide-binding proteins (G-proteins) occurs when they are charged with GTP, while hydrolysis of the bound nucleotide turns the signaling off. Despite a wealth of biochemical and structural information, the mechanism of GTP hydrolysis by G-proteins remains controversial. We have employed substrate-assisted catalysis as a novel approach to study catalysis by G-proteins. In these studies, we have used diaminobenzophenone-phosphonoamidate-GTP, a unique GTP analog bearing the functional groups that are missing in the GTPase-deficient [Leu227]G(s alpha) mutant. This mutant, found in various human tumors, fails to hydrolyze GTP for an extended period. In contrast, the GTP analog is hydrolyzed by this mutant and by the wild-type enzyme at the same rate. On the other hand, modification of G(s alpha) by cholera toxin, which catalyses ADP-ribosylation of Arg201 of G(s alpha), decreased the rates of hydrolysis of both GTP and its analog by 95%. These results attest to the specificity of the GTP analog as a unique substrate for the [Leu227]G(s alpha) mutant and to the essential role of Gln227 in GTP hydrolysis. Furthermore, the finding that the GTP analog was hydrolyzed at the same rate as GTP by the wild-type enzyme, favors a model in which formation of a pentavalent transition state intermediate, presumably stabilized by the catalytic glutamine, is not the rate-limiting step of the GTPase reaction.


Assuntos
Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Mutação Puntual , Animais , Benzofenonas/química , Benzofenonas/metabolismo , Sítios de Ligação/genética , Catálise , Toxina da Cólera/farmacologia , Simulação por Computador , Proteínas de Ligação ao GTP/química , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Técnicas In Vitro , Cinética , Modelos Moleculares , Conformação Proteica , Ratos , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 90(5): 1907-11, 1993 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-8446607

RESUMO

Excitation of fly photoreceptor cells is initiated by photoisomerization of rhodopsin to the active form of metarhodopsin. Fly metarhodopsin is thermostable, does not bleach, and does not regenerate spontaneously to rhodopsin. For this reason, the activity of metarhodopsin must be stopped by an effective termination reaction. On the other hand, there is also a need to restore the inactivated photopigment to an excitable state in order to keep a sufficient number of photopigment molecules available for excitation. The following findings reveal how these demands are met. The photopigment undergoes rapid phosphorylation upon photoconversion of rhodopsin to metarhodopsin and an efficient Ca2+ dependent dephosphorylation upon regeneration of metarhodopsin to rhodopsin. Phosphorylation decreases the ability of metarhodopsin to activate the guanine nucleotide-binding protein. Binding of 49-kDa arrestin further quenches the activity of metarhodopsin and protects it from dephosphorylation. Light-dependent binding and release of 49-kDa arrestin from metarhodopsin- and rhodopsin-containing membranes, respectively, directs the dephosphorylation reaction toward rhodopsin. This ensures the return of phosphorylated metarhodopsin to the rhodopsin pool without initiating transduction in the dark. Assays of rhodopsin dephosphorylation in the Drosophila retinal degeneration C (rdgC) mutant, a mutant in a gene previously cloned and predicted to encode a serine/threonine protein phosphatase, reveal that phosphorylated rhodopsin is a major substrate for the rdgC phosphatase. We propose that mutations resulting in either a decrease or an improper regulation of rhodopsin phosphatase activity bring about degeneration of the fly photoreceptor cells.


Assuntos
Antígenos/metabolismo , Dípteros/fisiologia , Proteínas do Olho/metabolismo , Células Fotorreceptoras/fisiologia , Rodopsina/metabolismo , Visão Ocular/fisiologia , Animais , Arrestina , Cálcio/fisiologia , Drosophila melanogaster/fisiologia , Ácido Egtázico/farmacologia , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Fosforilação , Rodopsina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...