Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163228

RESUMO

Cytogenetic approaches play an essential role as a quick evaluation of the first genetic effects after mutagenic treatment. Although labor-intensive and time-consuming, they are essential for the analyses of cytotoxic and genotoxic effects in mutagenesis and environmental monitoring. Over the years, conventional cytogenetic analyses were a part of routine laboratory testing in plant genotoxicity. Among the methods that are used to study genotoxicity in plants, the micronucleus test particularly represents a significant force. Currently, cytogenetic techniques go beyond the simple detection of chromosome aberrations. The intensive development of molecular biology and the significantly improved microscopic visualization and evaluation methods constituted significant support to traditional cytogenetics. Over the past years, distinct approaches have allowed an understanding the mechanisms of formation, structure, and genetic activity of the micronuclei. Although there are many studies on this topic in humans and animals, knowledge in plants is significantly limited. This article provides a comprehensive overview of the current knowledge on micronuclei characteristics in plants. We pay particular attention to how the recent contemporary achievements have influenced the understanding of micronuclei in plant cells. Together with the current progress, we present the latest applications of the micronucleus test in mutagenesis and assess the state of the environment.


Assuntos
Análise Citogenética/métodos , Citogenética/tendências , Plantas/genética , Aberrações Cromossômicas , Citogenética/métodos , Monitoramento Ambiental/métodos , Micronúcleos com Defeito Cromossômico , Testes para Micronúcleos/métodos , Micronúcleo Germinativo/genética , Micronúcleo Germinativo/metabolismo , Mutagênese , Testes de Mutagenicidade , Mutagênicos/toxicidade
2.
Plants (Basel) ; 10(7)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34371611

RESUMO

The chromatin structure is significantly influenced by some epigenetic modifications including DNA methylation. The nuclear organization plays an essential role in the cell response to external stresses including mutagens. We present an analysis of the correlation between epigenetic modifications and the instability of the Brachypodium distachyon genome, which are observed as micronuclei, following maleic hydrazide (MH) and nitroso-N-methylurea (MNU) treatments. We compared the level of DNA methylation in the control (untreated) and mutagen-treated B. distachyon nuclei. An immunostaining method using specific antibodies against modified DNA anti-5-methylcytosine was used for the evaluation of DNA methylation in a single nucleus and micronucleus. Interestingly, we showed an alteration of DNA methylation in cells after mutagenic treatments. The results indicate that DNA methylation might be involved in the response of the B. distachyon genome to mutagenic treatments. This demonstrates that analyses of the epigenetic modifications should be integrated into current plant genetic toxicology in order to explain the mechanisms of DNA damage and repair in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...