Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19624-19636, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934073

RESUMO

Trace organic contaminants (TrOCs) present major removal challenges for wastewater treatment. TrOCs, such as perfluoroalkyl and polyfluoroalkyl substances (PFAS), are associated with chronic toxicity at ng L-1 exposure levels and should be removed from wastewater to enable safe reuse and release of treated effluents. Established adsorbents, such as granular activated carbon (GAC), exhibit variable TrOC removal and fouling by wastewater constituents. These shortcomings motivate the development of selective novel adsorbents that also maintain robust performance in wastewater. Cross-linked ß-cyclodextrin (ß-CD) polymers are promising adsorbents with demonstrated TrOC removal efficacy. Here, we report a simplified and potentially scalable synthesis of a porous polymer composed of styrene-linked ß-CD and cationic ammonium groups. Batch adsorption experiments demonstrate that the polymer is a selective adsorbent exhibiting complete removal for six out of 13 contaminants with less adsorption inhibition than GAC in wastewater. The polymer also exhibits faster adsorption kinetics than GAC and ion exchange (IX) resin, higher adsorption affinity for PFAS than GAC, and is regenerable by solvent wash. Rapid small-scale column tests show that the polymer exhibits later breakthrough times compared to GAC and IX resin. These results demonstrate the potential for ß-CD polymers to remediate TrOCs from complex water matrices.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , beta-Ciclodextrinas , Águas Residuárias , Polímeros , Poluentes Químicos da Água/análise , Carvão Vegetal , Purificação da Água/métodos , Adsorção
2.
J Contam Hydrol ; 223: 103464, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30910507

RESUMO

Bioaugmentation is an option for aerobic remediation of groundwater contaminated with 1,4-dioxane. One approach uses microbes that cometabolize 1,4-dioxane following growth on a primary substrate (e.g., propane), whereas another uses microbes (e.g., Pseudonocardia dioxivorans CB1190) capable of using 1,4-dioxane as a sole substrate. The relative merits of these approaches are difficult to distinguish based on field data alone, and theoretical analyses of these processes have yet to be published. The objective of this study was to compare these remediation options using a transport model that incorporates advection, dispersion and biodegradation reactions described by multi-substrate Monod kinetics and co-inhibition effects. The transport model was coupled to an approximate steady-state air sparging simulation used to estimate gas (propane and oxygen) distribution at the field scale. The model was calibrated with field data for 1,4-dioxane and propane concentrations from a previously reported pilot study. The two remediation approaches were evaluated under different conditions that vary the initial concentration of 1,4-dioxane and the loading rates of oxygen, propane, and biomass. The metrics used to evaluate the remediation success were the time to reach an average 1,4-dioxane concentration of 1 µg L-1 and the percent of 1,4-dioxane biodegraded after 10 years of simulation. Results indicate that the initial concentration of 1,4-dioxane strongly influences which remediation approach is more effective. When initial concentrations were <10 mg L-1, propane-driven cometabolism led to faster remediation; whereas metabolic biodegradation was faster when initial concentrations were 10 mg L-1 or higher. Below 0.25 mg L-1, the viability of metabolic biodegradation improved, although cometabolism by propanotrophs still required less time to reach 1 µg L-1. Biomass injection rates had a strong effect on the rate of metabolism but not cometabolism because continuous input of primary substrate supported growth of propanotrophs. The performance of both cultures was negatively affected by a decrease in oxygen injection rate. The endogenous decay coefficient and the dispersion rate for biomass had a significant impact on cometabolic and metabolic biodegradation of 1,4-dioxane. The maximum specific rate for cometabolism of 1,4-dioxane, the dispersion rate for 1,4-dioxane, and effective porosity also had significant effects on the time to achieve remediation with propanotrophs.


Assuntos
Poluentes Químicos da Água , Biodegradação Ambiental , Dioxanos , Projetos Piloto
3.
J Hazard Mater ; 350: 180-188, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477886

RESUMO

Biodegradation of 1,4-dioxane has been studied extensively, however, there is insufficient information on the kinetic characteristics of cometabolism by propanotrophs and a lack of systematic comparisons to metabolic biodegradation. To fill in these gaps, experiments were performed with suspended growth cultures to determine 16 Monod kinetic coefficients that describe metabolic consumption of 1,4-dioxane by Pseudonocardia dioxanivorans CB1190 and cometabolism by the propanotrophic mixed culture ENV487 and the propanotroph Rhodococcus ruber ENV425. Maximum specific growth rates were highest for ENV425, followed by ENV487 and CB1190. Half saturation constants for 1,4-dioxane for the propanotrophs were one-half to one-quarter those for CB1190. Propane was preferentially degraded over 1,4-dioxane, but the reverse did not occur. A kinetic model was used to simulate batch biodegradation of 1,4-dioxane. Propanotrophs decreased 1,4-dioxane from 1000 to 1 µg/L in less time than CB1190 when the initial biomass concentration was 0.74 mg COD/L; metabolic biodegradation was favored at higher initial biomass concentrations and higher initial 1,4-dioxane concentrations. 1,4-Dioxane biodegradation was inhibited when oxygen was below 1.5 mg/L. The kinetic model provides a framework for comparing in situ biodegradation of 1,4-dioxane via bioaugmentation with cultures that use the contaminant as a growth substrate to those that achieve biodegradation via cometabolism.


Assuntos
Actinobacteria/metabolismo , Dioxanos/metabolismo , Rhodococcus/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...