Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 21(12): 4059-4087, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34472167

RESUMO

The ubiquity of the amide bond in functional molecules including proteins, natural products, pharmaceuticals, agrochemicals and materials provides impetus to design and develop newer strategies for the generation of this linkage. Owing to growing awareness about sustainability and development of benign strategies, the traditional route of synthesis of amides via reaction between carboxylic acids and amines in the presence of stoichiometric amount of coupling reagents is tagged to be harsh and wasteful. In one of the unconventional routes, nitro compounds are used directly as amine surrogates for preparing amides mostly via aminocarbonylation and amidation reactions. Typically, such processes involves nitroarenes owing to their propensity to transform into nitroso, hydroxylamine, diazo, hydrazine or aniline intermediates in situ under the influence of suitable catalyst or oxidant. This short review provides the comprehensive overview of these reactions including insight into the scope and their mechanisms.


Assuntos
Amidas , Nitrocompostos , Aminas , Ácidos Carboxílicos , Catálise
2.
Org Lett ; 22(23): 9381-9385, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33206540

RESUMO

The decarboxylative/oxidative amidation of aryl α-ketocarboxylic acids with 5-aryl-3-nitroisoxazole-4-carboxylates and substituted dinitrobenzenes under oxidative aqueous conditions to afford N-aryl amides is described. The reaction is suggested to proceed via a radical pathway in which a benzoyl nitroxyl radical, the key intermediate formed from reaction between nitroarene and benzoyl radical from glyoxalic acid, couples with hydroxyl radical from water to produce amide. Mechanistic insight allowed the scope of the strategy to be expanded to the synthesis of amides via reaction between aryl α-ketocarboxylic acids and nitroso compounds.

3.
RSC Med Chem ; 11(9): 1053-1062, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479698

RESUMO

A chemical library comprising substituted 3-nitroisoxazoles and 3-aminoisoxazoles was prepared and screened for their antileishmanial activity against L. donovani. As compared to Miltefosine, the standard drug used in bioassays, several compounds displayed remarkably better inhibition of the promastigote and amastigote stages of parasites. The in vivo evaluation of a few compounds in a golden hamster model showed significant reduction of the parasite load post treatment via the intraperitoneal route by several compounds. The preliminary pharmacokinetic evaluation of a representative compound 4mf via the oral route, however, indicated high systemic clearance from the body.

4.
ACS Omega ; 4(24): 20854-20867, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31858071

RESUMO

A multicomponent reaction between isatin, tetrahydroisoquinoline, and terminal alkyne in the presence of benzoic acid for the synthesis of N-(substituted-2-(2-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinolin-3-yl)phenyl)-3,4-dihydroisoquinoline-2(1H)-carboxamides is described. This three-component reaction proceeds via sequential formation of spirooxindole, generation of isocyanate functionality via cleavage of the C2-C3 bond in the isatin subunit of spirooxindole, and addition of the second molecule of tetrahydroisoquinoline to the isocyanate group to offer title compounds. Expansion of the protocol to four-component by including an additional primary amine affords 1-substituted-3-(2-(2-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinolin-3-yl)phenyl)urea in low to moderate yields. However, the reaction of intermediate spirooxindole with tetrahydroisoquinoline or any primary or secondary amine produced the title compound in excellent yields.

5.
ACS Omega ; 4(3): 5617-5629, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459716

RESUMO

A two-step one-pot efficient synthesis of pyrido[2,3-b]indoles via reaction between isatin, α-amino acid, and dipolarophile has been developed. The initial 1,3-dipolar cycloaddition between the reactants that is performed in the presence of either CuI or methanol results in spirooxindoles that undergo POCl3-mediated intramolecular dehydrative transformation to afford the title compounds.

6.
J Org Chem ; 83(7): 3537-3546, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29486127

RESUMO

A mild approach to diazenylation of active methylene compounds and N-heterocyclic compounds with arylhydrazine hydrochlorides in the presence of iodine under basic aerobic conditions was developed. The reaction could be executed either under heating or in the presence of blue LED light, though the latter condition was found to be relatively efficient. Presumably, the aryldiazene produced by oxidation of arylhydrazine hydrochloride acts as a nitrogen scavenger of the radical intermediate generated from the active methylene compound in the presence of iodine to produce the diazo compounds. The scope and limitations of the protocol are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...