Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 560(7720): 622-627, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30127406

RESUMO

Ordering of ferroelectric polarization1 and its trajectory in response to an electric field2 are essential for the operation of non-volatile memories3, transducers4 and electro-optic devices5. However, for voltage control of capacitance and frequency agility in telecommunication devices, domain walls have long been thought to be a hindrance because they lead to high dielectric loss and hysteresis in the device response to an applied electric field6. To avoid these effects, tunable dielectrics are often operated under piezoelectric resonance conditions, relying on operation well above the ferroelectric Curie temperature7, where tunability is compromised. Therefore, there is an unavoidable trade-off between the requirements of high tunability and low loss in tunable dielectric devices, which leads to severe limitations on their figure of merit. Here we show that domain structure can in fact be exploited to obtain ultralow loss and exceptional frequency selectivity without piezoelectric resonance. We use intrinsically tunable materials with properties that are defined not only by their chemical composition, but also by the proximity and accessibility of thermodynamically predicted strain-induced, ferroelectric domain-wall variants8. The resulting gigahertz microwave tunability and dielectric loss are better than those of the best film devices by one to two orders of magnitude and comparable to those of bulk single crystals. The measured quality factors exceed the theoretically predicted zero-field intrinsic limit owing to domain-wall fluctuations, rather than field-induced piezoelectric oscillations, which are usually associated with resonance. Resonant frequency tuning across the entire L, S and C microwave bands (1-8 gigahertz) is achieved in an individual device-a range about 100 times larger than that of the best intrinsically tunable material. These results point to a rich phase space of possible nanometre-scale domain structures that can be used to surmount current limitations, and demonstrate a promising strategy for obtaining ultrahigh frequency agility and low-loss microwave devices.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25679687

RESUMO

This work casts the semiclassical zeta function in a form suitable for practical calculations of energy levels for rather general systems. To accomplish this, the zeta function is approximated by applying an initial-value representation (IVR) treatment to the traces of the transfer matrix that appear when the function is expanded in cumulants. Because this approach does not require searches for periodic orbits or special trajectories obeying double-ended boundary conditions, it is easily applicable to multidimensional systems with smooth potentials. Calculations are presented for the energy levels of three two-dimensional systems, including one that is classically integrable, one having mixed phase space, and one that is almost fully chaotic. The results show that the present treatment is far more numerically efficient than a previously proposed IVR method for the zeta function [Barak and Kay, Phys. Rev. E 88, 062926 (2013)]. The approach described here successfully resolves nearly all energy levels in the range investigated for the first two systems as well as energy levels in spectral regions that are not too highly congested for the highly chaotic system.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24483550

RESUMO

The ability of semiclassical initial-value representation (IVR) methods to determine approximate energy levels for bound systems is limited due to problems associated with long classical trajectories. These difficulties become especially severe for large or classically chaotic systems. This work attempts to overcome such problems by developing an IVR expression that is classically equivalent to Bogomolny's formula for the transfer matrix [E. B. Bogomolny, Nonlinearity 5, 805 (1992); Chaos 2, 5 (1992)] and can be used to determine semiclassical energy levels. The method is adapted to levels associated with states of desired symmetries and applied to two two-dimensional quartic oscillator systems, one integrable and one mostly chaotic. For both cases, the technique is found to resolve all energy levels in the ranges investigated. The IVR method does not require a search for special trajectories obeying boundary conditions on the Poincaré surface of section and leads to more rapid convergence of Monte Carlo phase space integrations than a previously developed IVR technique. It is found that semiclassical energies can be extracted from the eigenvalues of transfer matrices of dimension close to the theoretical minimum determined by Bogomolny's theory. The results support the assertion that the present IVR theory provides a different semiclassical approximation to the transfer matrix than that of Bogomolny for ℏ≠0. For the chaotic system investigated the IVR energies are found to be generally more accurate than those predicted by Bogomolny's theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...