Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hematol ; 98(12): 1838-1846, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37688507

RESUMO

Sickle cell disease (SCD) is a severe, multisystemic hematological disorder that impacts nearly every major organ in adults. The current approved treatments for SCD directly target mutant hemoglobin or address downstream disease pathology. Several compounds targeting reduction of 2,3-DPG by activation of Pyruvate Kinase-R are currently being evaluated in SCD patients. In this study, we genetically engineered a mouse lacking 2,3-DPG on the Townes SCD mouse model background and evaluated the effects of 2,3-DPG loss on disease pathology. Animals lacking 2,3-DPG showed improvements in hematological markers and reductions in RBC sickling relative to native Townes mice, however, minimal difference in organ damage was observed in 2,3-DPG deficient mice compared to native Townes animals. When animals lacking 2,3-DPG were dosed with a compound designed to increase hemoglobin oxygen affinity, oxygen delivery related toxicity was observed.


Assuntos
Anemia Falciforme , Adulto , Humanos , Camundongos , Animais , 2,3-Difosfoglicerato , Anemia Falciforme/genética , Hemoglobinas/análise , Fenótipo , Oxigênio
2.
Res Pract Thromb Haemost ; 6(2): e12679, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35316941

RESUMO

Background: Patients with hemophilia have deficiencies in intrinsic coagulation factors and can develop inhibitors that limit the effectiveness of replacement coagulation factors. Marstacimab, a human monoclonal antibody, binds and inhibits the human tissue factor pathway inhibitor. Marstacimab is currently under development as a potential prophylactic treatment to prevent bleeding episodes in patients with hemophilia A and B. Objective: To assess the effects of marstacimab alone or in combination with the bypassing agent recombinant factor FVIIa (rFVIIa) or activated prothrombin complex concentrate (aPCC) on thrombin generation and bleeding. Methods: Marstacimab and/or rFVIIa or aPCC were added to hemophilic A or B plasma or nonhemophilic plasma in vitro. Hemostatic activity was measured using the thrombin generation assay. In vivo effects were assessed using a mouse acute bleeding model. Male hemophilia A mice were dosed with marstacimab plus aPCC before tail clip; blood loss was quantified by measuring hemoglobin. Results: Marstacimab plus rFVIIa or aPCC slightly increased peak thrombin levels compared with either agent alone. This increase was within the reported range for nonhemophilic plasma and did not exceed levels observed in nonhemophilic plasma treated with marstacimab alone. Hemophilia A mice that received 200 U/kg aPCC had significantly reduced bleeding (62%) compared with vehicle-treated mice (p < 0.05), and marstacimab plus aPCC reduced bleeding by 83.3% compared with vehicle (p= 0.0009). Conclusions: Marstacimab alone or with bypassing agents increased hemostasis in hemophilia plasma without generating excessive thrombin. The hemostatic activity of marstacimab plus aPCC was confirmed in hemophilia A mice.

4.
J Med Chem ; 64(1): 326-342, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356244

RESUMO

Sickle cell disease (SCD) is a genetic disorder caused by a single point mutation (ß6 Glu → Val) on the ß-chain of adult hemoglobin (HbA) that results in sickled hemoglobin (HbS). In the deoxygenated state, polymerization of HbS leads to sickling of red blood cells (RBC). Several downstream consequences of polymerization and RBC sickling include vaso-occlusion, hemolytic anemia, and stroke. We report the design of a noncovalent modulator of HbS, clinical candidate PF-07059013 (23). The seminal hit molecule was discovered by virtual screening and confirmed through a series of biochemical and biophysical studies. After a significant optimization effort, we arrived at 23, a compound that specifically binds to Hb with nanomolar affinity and displays strong partitioning into RBCs. In a 2-week multiple dose study using Townes SCD mice, 23 showed a 37.8% (±9.0%) reduction in sickling compared to vehicle treated mice. 23 (PF-07059013) has advanced to phase 1 clinical trials.


Assuntos
Anemia Falciforme/tratamento farmacológico , Hemoglobina A/efeitos dos fármacos , Hemoglobina Falciforme/efeitos dos fármacos , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Animais , Eritrócitos/metabolismo , Camundongos , Oxigênio/metabolismo , Quinolinas/química
5.
Proc Natl Acad Sci U S A ; 115(27): 7057-7062, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915029

RESUMO

Metastasis remains the leading cause of cancer mortality, and reactive oxygen species (ROS) signaling promotes the metastatic cascade. However, the molecular pathways that control ROS signaling relevant to metastasis are little studied. Here, we identify SIRT3, a mitochondrial deacetylase, as a regulator of cell migration via its control of ROS signaling. We find that, although mitochondria are present at the leading edge of migrating cells, SIRT3 expression is down-regulated during migration, resulting in elevated ROS levels. This SIRT3-mediated control of ROS represses Src oxidation and attenuates focal adhesion kinase (FAK) activation. SIRT3 overexpression inhibits migration and metastasis in breast cancer cells. Finally, in human breast cancers, SIRT3 expression is inversely correlated with metastatic outcome and Src/FAK signaling. Our results reveal a role for SIRT3 in cell migration, with important implications for breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Células Epiteliais/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Proteínas de Neoplasias/metabolismo , Sirtuína 3/biossíntese , Quinases da Família src/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ativação Enzimática , Células Epiteliais/patologia , Feminino , Humanos , Metástase Neoplásica , Espécies Reativas de Oxigênio , Sirtuína 3/metabolismo
6.
Cancer Res ; 76(10): 2932-43, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197230

RESUMO

Triple-negative breast cancer (TNBC) is considered an early onset subtype of breast cancer that carries with it a poorer prognosis in young rather than older women for reasons that remain poorly understood. Hematopoiesis in the bone marrow becomes altered with age and may therefore affect the composition of tumor-infiltrating hematopoietic cells and subsequent tumor progression. In this study, we investigated how age- and tumor-dependent changes to bone marrow-derived hematopoietic cells impact TNBC progression. Using multiple mouse models of TNBC tumorigenesis and metastasis, we found that a specific population of bone marrow cells (BMC) upregulated CSF-1R and secreted the growth factor granulin to support stromal activation and robust tumor growth in young mice. However, the same cell population in old mice expressed low levels of CSF1R and granulin and failed to promote tumor outgrowth, suggesting that age influences the tumorigenic capacity of BMCs in response to tumor-associated signals. Importantly, BMCs from young mice were sufficient to activate a tumor-supportive microenvironment and induce tumor progression in old mice. These results indicate that hematopoietic age is an important determinant of TNBC aggressiveness and provide rationale for investigating age-stratified therapies designed to prevent the protumorigenic effects of activated BMCs. Cancer Res; 76(10); 2932-43. ©2016 AACR.


Assuntos
Células da Medula Óssea/patologia , Hematopoese/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Fatores Etários , Idade de Início , Animais , Apoptose , Western Blotting , Células da Medula Óssea/metabolismo , Proliferação de Células , Progressão da Doença , Feminino , Citometria de Fluxo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Nus , Progranulinas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Hum Mol Genet ; 23(14): 3681-94, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24556217

RESUMO

Inclusion body myositis (IBM), a degenerative and inflammatory disorder of skeletal muscle, and Alzheimer's disease share protein derangements and attrition of postmitotic cells. Overexpression of cyclins and proliferating cell nuclear antigen (PCNA) and evidence for DNA replication is reported in Alzheimer's disease brain, possibly contributing to neuronal death. It is unknown whether aberrant cell cycle reentry also occurs in IBM. We examined cell cycle markers in IBM compared with normal control, polymyositis (PM) and non-inflammatory dystrophy sample sets. Next, we tested for evidence of reentry and DNA synthesis in C2C12 myotubes induced to express ß-amyloid (Aß42). We observed increased levels of Ki-67, PCNA and cyclins E/D1 in IBM compared with normals and non-inflammatory conditions. Interestingly, PM samples displayed similar increases. Satellite cell markers did not correlate with Ki-67-affected myofiber nuclei. DNA synthesis and cell cycle markers were induced in Aß-bearing myotubes. Cell cycle marker and cyclin protein expressions were also induced in an experimental allergic myositis-like model of PM in mice. Levels of p21 (Cip1/WAF1), a cyclin-dependent kinase inhibitor, were decreased in affected myotubes. However, overexpression of p21 did not rescue cells from Aß-induced toxicity. This is the first report of cell cycle reentry in human myositis. The absence of rescue and evidence for reentry in separate models of myodegeneration and inflammation suggest that new DNA synthesis may be a reactive response to either or both stressors.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Fragmentos de Peptídeos/metabolismo , Polimiosite/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL
8.
Front Cell Neurosci ; 7: 129, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24027495

RESUMO

Prefrontal cortex (PFC) is recognized as an AD-vulnerable region responsible for defects in cognitive functioning. Pyramidal cell (PC) connections are typically facilitating (F) or depressing (D) in PFC. Excitatory post-synaptic potentials (EPSPs) were recorded using patch-clamp from single connections in PFC slices of rats and ferrets in the presence of ß-amyloid (Aß). Synaptic transmission was significantly enhanced or reduced depending on their intrinsic type (facilitating or depressing), Aß species (Aß 40 or Aß 42) and concentration (1-200 nM vs. 0.3-1 µ M). Nanomolar Aß 40 and Aß 42 had opposite effects on F-connections, resulting in fewer or increased EPSP failure rates, strengthening or weakening EPSPs and enhancing or inhibiting short-term potentiation [STP: synaptic augmentation (SA) and post-tetanic potentiation (PTP)], respectively. High Aß 40 concentrations induced inhibition regardless of synaptic type. D-connections were inhibited regardless of Aß species or concentration. The inhibition induced with bath application was hard to recover by washout, but a complete recovery was obtained with brief local application and prompt washout. Our data suggests that Aß 40 acts on the prefrontal neuronal network by modulating facilitating and depressing synapses. At higher levels, both Aß 40 and Aß 42 inhibit synaptic activity and cause irreversible toxicity once diffusely accumulated in the synaptic environment.

9.
PLoS One ; 5(4): e10253, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20436674

RESUMO

Electrotonic couplings (i.e., electrical synapses or gap junctions) are fundamental to neuronal synchronization, and thus essential for many physiological functions and pathological disorders. Interneuron electrical synapses have been studied intensively. Although studies on electrotonic couplings between pyramidal cells (PCs) are emerging, particularly in the hippocampus, evidence is still rare in the neocortex. The electrotonic coupling of PCs in the neocortex is therefore largely unknown in terms of electrophysiological, anatomical and synaptological properties. Using multiple patch-clamp recording with differential interference contrast infrared videomicroscopy (IR-DIC) visualization, histochemical staining, and 3D-computer reconstruction, electrotonic coupling was recorded between close PCs, mainly in the medial prefrontal cortex as well as in the visual cortical regions of ferrets and rats. Compared with interneuron gap junctions, these electrotonic couplings were characterized by several special features. The recording probability of an electrotonic coupling between PCs is extremely low; but the junctional conductance is notably high, permitting the direct transmission of action potentials (APs) and even tonic firing between coupled neurons. AP firing is therefore perfectly synchronized between coupled PCs; Postjunctional APs and spikelets alternate following slight changes of membrane potentials; Postjunctional spikelets, especially at high frequencies, are summated and ultimately reach AP-threshold to fire. These properties of pyramidal electrotonic couplings largely fill the needs, as predicted by simulation studies, for the synchronization of a neuronal assembly. It is therefore suggested that the electrotonic coupling of PCs plays a unique role in the generation of neuronal synchronization in the neocortex.


Assuntos
Neocórtex/fisiologia , Células Piramidais/fisiologia , Animais , Comunicação Celular/fisiologia , Eletrofisiologia , Furões , Junções Comunicantes , Neocórtex/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos , Sinapses
10.
PLoS One ; 4(12): e8366, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20027222

RESUMO

Changes in neuronal synchronization have been found in patients and animal models of Alzheimer's disease (AD). Synchronized behaviors within neuronal networks are important to such complex cognitive processes as working memory. The mechanisms behind these changes are not understood but may involve the action of soluble beta-amyloid (Abeta) on electrical networks. In order to determine if Abeta can induce changes in neuronal synchronization, the activities of pyramidal neurons were recorded in rat prefrontal cortical (PFC) slices under calcium-free conditions using multi-neuron patch clamp technique. Electrical network activities and synchronization among neurons were significantly inhibited by low dose Abeta42 (1 nM) and initially by high dose Abeta42 (500 nM). However, prolonged application of high dose Abeta42 resulted in network activation and tonic firing. Underlying these observations, we discovered that prolonged application of low and high doses of Abeta42 induced opposite changes in action potential (AP)-threshold and after-hyperpolarization (AHP) of neurons. Accordingly, low dose Abeta42 significantly increased the AP-threshold and deepened the AHP, making neurons less excitable. In contrast, high dose Abeta42 significantly reduced the AP-threshold and shallowed the AHP, making neurons more excitable. These results support a model that low dose Abeta42 released into the interstitium has a physiologic feedback role to dampen electrical network activity by reducing neuronal excitability. Higher concentrations of Abeta42 over time promote supra-synchronization between individual neurons by increasing their excitability. The latter may disrupt frontal-based cognitive processing and in some cases lead to epileptiform discharges.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Córtex Pré-Frontal/fisiologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Potenciais de Ação/efeitos dos fármacos , Peptídeos beta-Amiloides/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Técnicas In Vitro , Rede Nervosa/fisiologia , Inibição Neural/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...