Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemistryOpen ; : e202400092, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687137

RESUMO

Controlling the local concentration of metal complexes at the surface of ionic liquids (ILs) is a highly sought-after objective due to its pivotal implications in supported ionic liquid phase (SILP) catalysis. Equally important is to avoid per- and polyfluorinated substances due to environmental concerns. Herein, we investigate the surface enrichment of Ru polypyridyl complexes with fluorine-free alkylic side groups of varying lengths and shapes, using the hydrophilic IL [C2C1Im][OAc] as solvent. Additional charged carboxylate groups are included into the polypyridyl ligands to increase the solubility of the complex in the IL. When the ligand system is functionalized with long and hydrophobic alkyl side chains, the complex predominantly localizes at the IL/vacuum interface, as deduced from angle-resolved X-ray photoelectron spectroscopy. Conversely, in the presence of short or more bulky substituents, no surface enrichment is observed. This buoy-like behaviour with fluorine-free side groups is explored for 0.05 %mol to 1 %mol solutions. Intriguingly, surface saturation occurs at approximately 0.5 %mol, which is beneficial to the efficient operation of catalytic systems featuring high surface areas, such as SILP catalysts.

2.
Phys Chem Chem Phys ; 26(9): 7602-7610, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363127

RESUMO

The interaction of metal complexes with ionic liquids, with a particular focus on the stability and surface concentration of the metal centers, is crucial in applications involving catalysts based on supported ionic liquids. In this study, we synthesized the complexes [Ru(tpy)(bpy)Cl][PF6] and [Ru(tpy)(dcb)Cl][PF6] (tpy = 2,2',2''-terpyridine, bpy = 2,2'-bipyridine, dcb = 4,4'-dicarboxy-2,2'-bipyridine) and we prepared solutions using the ionic liquids (ILs) 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] and 1-butyl-3-methylimidazolium hexafluorophosphate [C4C1Im][PF6]. The chemical environment of the Ru(II) metal center and the interfacial behavior of the complexes in the different IL solutions were determined using angle-resolved X-ray photoelectron spectroscopy (ARXPS). In [C4C1Im][PF6], [Ru(tpy)(bpy)Cl][PF6] maintains its chemical structure, while in [C2C1Im][OAc], partial changes in the chemical environment of the Ru center are indicated by XPS, likely due to ligand exchange. The presence of carboxylic acid functional groups in the bipyridyl ligand seems to inhibit this ligand exchange. The investigated complexes do not exhibit surface activity but are depleted from the IL/gas interface. These findings hold significance for the design of new supported ionic liquid phase catalysts based on Ru complexes.

3.
Dalton Trans ; 53(4): 1575-1585, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38164735

RESUMO

We have prepared two trimetallic complexes [{Ru(bda)(DMSO)(µ-CN)}2Ru(L)4] (with bda = 2,2'-bipyridine-6,6'-dicarboxylate) where two {Ru(bda)} centers are bridged by a cyanide complex of the trans-Ru(L)4CN2 family (with L = pyridine and 4-tert-butylpyridine). The complex [{Ru(bda)(DMSO)(µ-CN)}2Ru(py)4] is fully soluble in aqueous solution and is a catalyst for the oxidation of water both chemically, using Ce(IV) at pH = 1 as the terminal oxidant, and electrochemically. Both reactions are first order in the complex and the resting state of the catalyst is the [RuVRuIII(py)4RuIV]2+ redox state. Electrochemical and spectroelectrochemical studies together with (TD)DFT calculations show that the coupling between the Ru(bda) fragments for the [RuIIIRuII(py)4RuIII]2+ and [RuIVRuII(py)4RuIV]2+ redox states is very weak, but significant for the [RuVRuII(py)4RuIV]2+ ion due to the orientation of the orbitals involved. This coupling affects the reactivity of the [RuVRuII(py)4RuIV]2+ redox state, making it a much slower catalyst towards the water oxidation reaction than [RuVRuIII(py)4RuIV]2+.

4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468650

RESUMO

This work explores the concept that differential wave function overlap between excited states can be engineered within a molecular chromophore. The aim is to control excited state wave function symmetries, so that symmetry matches or mismatches result in differential orbital overlap and define low-energy trajectories or kinetic barriers within the excited state surface, that drive excited state population toward different reaction pathways. Two donor-acceptor assemblies were explored, where visible light absorption prepares excited states of different wave function symmetry. These states could be resolved using transient absorption spectroscopy, thanks to wave function symmetry-specific photoinduced optical transitions. One of these excited states undergoes energy transfer to the acceptor, while another undertakes a back-electron transfer to restate the ground state. This differential behavior is possible thanks to the presence of kinetic barriers that prevent excited state equilibration. This strategy can be exploited to avoid energy dissipation in energy conversion or photoredox catalytic schemes.

5.
J Phys Chem Lett ; 11(19): 8399-8405, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32924492

RESUMO

Despite a diverse manifold of excited states available, it is generally accepted that the photoinduced reactivity of charge-transfer chromophores involves only the lowest-energy excited state. Shining a visible-light laser pulse on an aqueous solution of the chromophore-quencher [Ru(tpy)(bpy)(µNC)OsIII(CN)5]- assembly (tpy = 2,2';6,2''-terpyridine and bpy = 2,2'-bipyridine), we prepared a mixture of two charge-transfer excited states with different wave-function symmetry. We were able to follow, in real time, how these states undergo separate electron-transfer reaction pathways. As a consequence, their lifetimes differ in 3 orders of magnitude. Implicit are energy barriers high enough to prevent internal conversion within early excited-state populations, shaping isolated electron-transfer channels in the excited-state potential energy surface. This is relevant not only for supramolecular donor/acceptor chemistry with restricted donor/acceptor relative orientations. These energy barriers provide a means to avoid chemical potential dissipation upon light absorption in any molecular energy conversion scheme, and our observations invite to explore wave-function symmetry-based strategies to engineer these barriers.

6.
Dalton Trans ; 49(13): 4125-4135, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150187

RESUMO

In this work, we present the preparation of a complex [(tpy)(bpy)Ru(µ-CN)Ru(py)4(OH2)](PF6)3 (tpy = 2,2',6',2''-terpyridine; bpy = 2,2'-bipyridine; py = pyridine) that combines a ruthenium chromophore linked to another ruthenium ion that bears a labile position trans to the bridge. Substitution in this position is very attractive, as it allows us to place a quencher trans to the chromophore maximizing the separation between them. This complex allowed us to prepare a family of cyanide-bridged ruthenium polypyridines of general formula [Ru(tpy)(bpy)(µ-CN)Ru(py)4(L)]2/3+ (L = Cl-, NCS-, 4-dimethylaminopyridine or acetonitrile) and compare them with the related complexes [Ru(tpy)(bpy)(µ-CN)Ru(bpy)2(L)]2/3+ where the L ligand lies cis to the bridge. The mixed-valence form of these complexes shows evidence of strong coupling between the ruthenium ions and enhanced delocalization as the redox potential of the {Ru(py)4L} fragment increases. (TD)DFT calculations reproduce very well the experimental spectra of these complexes and indicate that when L = acetonitrile, the hole in the mixed-valence complex is almost equally distributed between both ruthenium ions. For L = DMAP and NCS- the π orbitals of the ligands are mixed with dπ orbitals of the Ru ions, resulting in partial delocalization of the charge on the ligands. The latter result illustrates that the trans configuration of these complexes is well-suited to extend the interaction beyond the bridged ruthenium ions.

7.
Inorg Chem ; 58(16): 10898-10904, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31361126

RESUMO

Bimetallic trans-[RuII(tpm)(bpy)(µNC)RuII(L)4(CN)]2+, where bpy is 2,2'-bipyridine, tpm is tris(1-pyrazolyl)methane and L = 4-methoxypyridine (MeOpy) or pyridine (py), was examined using ultrafast vis-NIR transient absorption spectroscopy. Of great relevance are the longest-lived excited states in the form of strongly coupled photoinduced mixed-valence systems, which exhibit intense photoinduced absorptions in the NIR and are freely tunable by the judicious choice of the coordination spheres of the metallic ions. Using the latter strategy, we succeeded in tailoring the excited state lifetimes of bimetallic complexes and, in turn, achieving significantly longer values relative to related monometallic complexes. Notable is the success in extending the lifetimes, when considering the higher density of vibrational states, as they are expected to facilitate nonradiative ground-state recovery.

8.
Chem Commun (Camb) ; 55(53): 7659-7662, 2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31198917

RESUMO

Upon MLCT photoexcitation, {(tpy)Ru} becomes the electron acceptor in the mixed valence {(tpy˙-)RuIII-δ-NC-MII+δ} moiety, reversing its role as the electron donor in the ground-state mixed valence analogue. Photoinduced mixed valence interactions can be tuned to obtain extended lifetimes and higher emission quantum yields, beneficial in supramolecular energy conversion schemes.

9.
Inorg Chem ; 57(6): 3042-3053, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29473740

RESUMO

Despite the large body of work on {Ru(bpy)2} sensitizer fragments, the same attention has not been devoted to their {Ru(py)4} analogues. In this context, we explored the donor-acceptor trans-[Ru(L)4{(µ-NC)Cr(CN)5}2]4-, where L = pyridine, 4-methoxypyridine, 4-dimethylaminopyridine. We report on the synthesis and the crystal structure as well as the electrochemical, spectroscopical, and photophysical properties of these trimetallic complexes, including transient absorption measurements. We observed emission from chromium-centered d-d states upon illuminating into either MLCT or MM'CT absorptions of {Ru(L)4} or {Ru-Cr}, respectively. The underlying energy transfer is as fast as 600 fs with quantum efficiencies ranging from 10% to 100%. These results document that {Ru(py)4} sensitizer fragments are as efficient as {Ru(bpy)2} in short-range energy transfer scenarios.

10.
Dalton Trans ; 46(45): 15757-15768, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29095449

RESUMO

In this work, we report the evolution of the properties of the inter-valence charge transfer (IVCT) transition in a family of cyanide-bridged ruthenium polypyridines of general formula [RuII(tpy)(bpy)(µ-CN)RuIII(bpy)2(L)]3/4+ (tpy = 2,2',6',2''-terpyridine; bpy = 2,2'-bipyridine; L = Cl-, NCS-, 4-dimethylaminopyridine or acetonitrile). In these complexes, the redox potential difference between both ruthenium centers (ΔE) is systematically modified. A decrease in ΔE causes a red shift of the energy and an intensity enhancement of the observed IVCT transitions. For L = acetonitrile, the IVCT band becomes narrower and asymmetrical, and shows very little dependence on the nature of the solvent, suggesting a delocalized configuration, although a non-symmetrical one. Also, additional electronic transitions of low energy are clearly resolved in this complex. The observed variation in the properties of the IVCT transitions can be understood on the basis of DFT calculations, that point to increasing mixing between the dπ orbitals of both Ru ions.

11.
Chem Sci ; 8(11): 7434-7442, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29163895

RESUMO

The picosecond excited state dynamics of [Ru(tpm)(bpy)(NCS)]+ (RubNCS+ ) and [Ru(tpm)(bpy)(CN)]+ (RubCN+ ) (tpm = tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine) have been analyzed by means of transient absorption measurements and spectroelectrochemistry. Emissive 3MLCTs with (GS)HOMO(h+)-(GS)LUMO(e-) configurations are the lowest triplet excited states regardless of whether 387 or 505 nm photoexcitation is used. 387 nm photoexcitation yields, after a few picoseconds, the emissive 3MLCTs. In contrast, 505 nm photoexcitation populates an intermediate excited state that we assign as a 3MLCT state, in which the hole sits in a metal-centered orbital of different symmetry, prior to its conversion to the emissive 3MLCTs. The disparities in terms of electronic configuration between the intermediate and the emissive 3MLCTs have two important consequences. On one hand, both states feature very different fingerprint absorptions in transient absorption measurements. On the other hand, the reconfiguration is impeded by a kinetic barrier. As such, the conversion is followed spectroscopically and kinetically on the 300 ps timescale.

12.
Phys Chem Chem Phys ; 19(4): 2882-2893, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28074958

RESUMO

Multi-metallic complexes based on {Ru-Cr}, {Ru-Ru} and {Ru-Ru-Cr} fragments are investigated for their light-harvesting and long-range energy transfer properties. We report the synthesis and characterization of [Ru(tpy)(bpy)(µ-CN)Ru(py)4Cl]2+ and [Ru(tpy)(bpy)(µ-CN)Ru(py)4(µ-NC)Cr(CN)5]. The intercalation of {RuII(py)4} linked by cyanide bridges between {Ru(tpy)(bpy)} and {Cr(CN)5} results in efficient, distant energy transfer followed by emission from the Cr moiety. Characterization of the energy transfer process based on photophysical and ultrafast time-resolved absorption suggests the delocalization of holes in the excited state, providing a pathway for energy transfer between the end moieties. The proposed mechanism opens the door to utilize this family of complexes as an appealing platform for the design of antenna compounds as the properties of the fragments could be tuned independently.

13.
Dalton Trans ; 45(13): 5464-75, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26841245

RESUMO

Ligand field (LF) states have been present in discussions on the photophysics and photochemistry of ruthenium-iminic chromophores for decades, although there is very little documented direct evidence of them. We studied the picosecond transient absorption (TA) spectroscopy of four {Ru(II)(imine)} complexes that respond to the formula trans-[Ru(L)4(X)2], where L is either pyridine (py) or 4-methoxypyridine (MeOpy) and X is either cyanide or thiocyanate. Dicyano compounds behave as most ruthenium polypyridines and their LF states remain silent. In contrast, in the dithiocyanate complexes we found clear spectroscopic evidence of the participation of LF states in the MLCT decay pathway. These states are of donor and acceptor character simultaneously and this is manifested in the presence of MLCT and LMCT transient absorption bands of similar energy. Spectroelectrochemical techniques supported the interpretation of the absorption features of MLCT states, and DFT methods helped to assign their spectroscopic signatures and provided strong evidence on the nature of LF states.

14.
Inorg Chem ; 53(16): 8221-9, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25068527

RESUMO

We report here the spectroscopic properties of four very closely related mixed-valence cyanide-bridged bimetallic complexes, trans-[Ru(T)(bpy)(µ-NC)Ru(L)4(CN)](3+) (T = tris(1-pyrazolyl)methane (tpm, a) or 2,2';6',2″-terpyridine, (tpy, b), and L = pyridine (py, 1) or 4-methoxypyridine (MeOpy, 2)). In acetonitrile all the complexes present intervalence charge transfer (IVCT) transitions in the NIR region, but their intensities are widely different, with the intensity of the transition observed for 1a-b(3+) around four times larger than that observed for 2a-b(3+). This contrasting behavior can be traced to the different nature of the dπ acceptor orbitals involved in these transitions, as confirmed by (TD)DFT calculations. The spectroscopy of 1a-b(3+) provides evidence that the spin density is delocalized over the two ruthenium ions, such as a narrowing of the IVCT bands that results in the resolution of the expected three bands, and a weak solvent dependence of the energy of these transitions. The spectroscopy of 2a-b(3+) instead indicates that the spin density is localized on one ruthenium ion. The IVCT in these systems is particularly weak due to the configuration of the Ru(III), where the vacant orbital is perpendicular to the cyanide bridge.

15.
Angew Chem Int Ed Engl ; 53(5): 1293-6, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24375865

RESUMO

The NIR and IR spectroscopic properties of the cyanide-bridged complex, trans-[Ru(dmap)4 {(µ-CN)Ru(py)4 Cl}2 ](3+) (py=pyridine, dmap=4-dimethylaminopyridine) provide strong evidence that this trimetallic ion behaves as a Class III mixed-valence species, the first example reported of a cyanide-bridged system. This has been accomplished by tuning the energy of the fragments in the trimetallic complex to compensate for the intrinsic asymmetry of the cyanide bridge. Moreover, (TD)DFT calculations accurately predict the spectra of the trans-[Ru(dmap)4 {(µ-CN)Ru(py)4 Cl}2 ](3+) ion and confirms its delocalized nature.

16.
Dalton Trans ; 42(48): 16723-32, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24071729

RESUMO

A series of cyanide-bridged bimetallic compounds of the general formula [Ru(L)(bpy)(µ-NC)(M)](2-/-/2+) (L = tpy, 2,2'-6',2''-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine, M = Ru(II)(CN)5, Os(III)(CN)5, Os(II)(CN)5, Ru(II)(py)4(CN), py = pyridine) have been synthesized and fully characterized. Most of them present MLCT emission (λ = 690-730 nm, Φ = 10(-3)-10(-4)) and their photophysical properties resemble the ones of the respective mononuclear Ru(L)(bpy) species. The exception is when M is Os(III)(CN)5, where an intramolecular electron transfer quenching mechanism is proposed. The conditions that should be met for avoiding the reductive or oxidative quenching of the excited state are also discussed.

17.
Philos Trans A Math Phys Eng Sci ; 371(1995): 20120330, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23776299

RESUMO

Octahedral Ru(II) polypyridyl complexes constitute a superb platform to devise photoactive triggers capable of delivering entire molecules in a reliable, fast, efficient and clean way. Ruthenium coordination chemistry opens the way to caging a wide range of molecules, such as amino acids, nucleotides, neurotransmitters, fluorescent probes and genetic inducers. Contrary to other phototriggers, these Ru-based caged compounds are active with visible light, and can be photolysed even at 532 nm (green), enabling the use of simple and inexpensive equipment. These compounds are also active in the two-photon regime, a property that extends their scope to systems where IR light must be used to achieve high precision and penetrability. The state of the art and the future of ruthenium polypyridyl phototriggers are discussed, and several new applications are presented.

18.
Inorg Chem ; 52(6): 2906-17, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23458970

RESUMO

In this article, we report the structural, spectroscopic, and electrochemical properties of the cyanide-bridged complex salts trans-[(NC)Ru(II)(L)4(µ-CN)Ru(II)(py)4Cl]PF6 and trans-[Ru(II)(L)4{(µ-CN)Ru(II)(py)4Cl}2](PF6)2 (L = pyridine or 4-methoxypyridine). The mixed-valence forms of these compounds show a variety of metal-to-metal charge-transfer bands, including one arising from charge transfer between the remote ruthenium units. The latter is more intense when L = 4-methoxypyridine and points to the role of the bridging ruthenium unit in promoting mixing between the dπ orbitals of the terminal fragments.

19.
Dalton Trans ; 41(17): 5343-50, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22451041

RESUMO

We report the synthesis, structure and properties of the cyanide-bridged dinuclear complex ions [Ru(L)(bpy)(µ-NC)M(CN)(5)](2-/-) (L = tpy, 2,2';6',2''-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine, M = Fe(II), Fe(III), Cr(III)) and the related monomers [Ru(L)(bpy)X](2+) (X = CN(-) and NCS(-)). All the monomeric compounds are weak MLCT emitters (λ = 650-715 nm, ϕ ≈ 10(-4)). In the Fe(II) and Cr(III) dinuclear systems, the cyanide bridge promotes efficient energy transfer between the Ru-centered MLCT state and a Fe(II)- or Cr(III)-centered d-d state, which results either in a complete quenching of luminescence or in a narrow red emission (λ ≈ 820 nm, ϕ ≈ 10(-3)) respectively. In the case of Fe(III) dinuclear systems, an electron transfer quenching process is also likely to occur.

20.
Inorg Chem ; 51(3): 1345-58, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22273403

RESUMO

The first designed molecular catalyst for water oxidation is the "blue dimer", cis,cis-[(bpy)(2)(H(2)O)Ru(III)ORu(III)(OH(2))(bpy)(2)](4+). Although there is experimental evidence for extensive electronic coupling across the µ-oxo bridge, results of earlier DFT and CASSCF calculations provide a model with magnetic interactions of weak to moderately coupled Ru(III) ions across the µ-oxo bridge. We present the results of a comprehensive experimental investigation, combined with DFT calculations. The experiments demonstrate both that there is strong electronic coupling in the blue dimer and that its effects are profound. Experimental evidence has been obtained from molecular structures and key bond distances by XRD, electrochemically measured comproportionation constants for mixed-valence equilibria, temperature-dependent magnetism, chemical properties (solvent exchange, redox potentials, and pK(a) values), XPS binding energies, analysis of excitation-dependent resonance Raman profiles, and DFT analysis of electronic absorption spectra. The spectrum can be assigned based on a singlet ground state with specific hydrogen-bonding interactions with solvent molecules included. The results are in good agreement with available experimental data. The DFT analysis provides assignments for characteristic absorption bands in the near-IR and visible regions. Bridge-based dπ → dπ* and interconfiguration transitions at Ru(III) appear in the near-IR and MLCT and LMCT transitions in the visible. Reasonable values are also provided by DFT analysis for experimentally observed bond distances and redox potentials. The observed temperature-dependent magnetism of the blue dimer is consistent with a delocalized, diamagnetic singlet state (dπ(1)*)(2) with a low-lying, paramagnetic triplet state (dπ(1)*)(1)(dπ(2)*)(1). Systematic structural-magnetic-IR correlations are observed between ν(sym)(RuORu) and ν(asym)(RuORu) vibrational energies and magnetic properties in a series of ruthenium-based, µ-oxo-bridged complexes. Consistent with the DFT electronic structure model, bending along the Ru-O-Ru axis arises from a Jahn-Teller distortion with ∠Ru-O-Ru dictated by the distortion and electron-electron repulsion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...