Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(23): 5792-5801, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38832806

RESUMO

Controlling the valency of directional interactions of patchy particles is insufficient for the selective formation of target crystalline structures due to the competition between phases of similar free energy. Examples of such are stacking hybrids of interwoven hexagonal and cubic diamonds with (i) its liquid phase, (ii) arrested glasses, or (iii) clathrates, all depending on the relative patch size, despite being within the one-bond-per-patch regime. Herein, using molecular dynamics simulations, we demonstrate that although tetrahedral patchy particles with narrow patches can assemble into clathrates or stacking hybrids in the bulk, this behavior can be suppressed by the application of external surface potential. Depending on its strength, the selective growth of either cubic diamond crystals or empty sII clathrate cages can be achieved. The formation of a given ordered network depends on the structure of the first adlayer, which is commensurate with the emerging network.

2.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38752534

RESUMO

Achieving the formation of target open crystalline lattices from colloidal particles is of paramount importance for their potential application in photonics. Examples of such desired structures are the diamond, tetrastack, and pyrochlore lattices. Here, we demonstrate that the self-assembly of tetravalent patchy particles results in the selective formation of cubic tetrastack crystals, both in the bulk and in the systems subjected to external fields exerted by the solid substrate. It is demonstrated that the presence of an external field allows for the formation of well-defined single crystals with a low density of defects. Moreover, depending on the strength of the applied external field, the mechanism of epitaxial growth changes. For weakly attractive external fields, the crystallization occurs in a similar manner as in the bulk, since the fluid does not wet the substrate. Nonetheless, the formed crystal is considerably better ordered than the crystals formed in bulk, since the surface induces the ordering in the first layer. On the other hand, it is demonstrated that the formation of well-ordered cubic tetrastack crystals is considerably enhanced by the increase in external field strength, and the formation of the thick crystalline film occurs via a series of layering transitions.

3.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341698

RESUMO

The ice surface is known for presenting a very small kinetic friction coefficient, but the origin of this property remains highly controversial to date. In this work, we revisit recent computer simulations of ice sliding on atomically smooth substrates, using newly calculated bulk viscosities for the TIP4P/ice water model. The results show that spontaneously formed premelting films in static conditions exhibit an effective viscosity that is about twice the bulk viscosity. However, upon approaching sliding speeds in the order of m/s, the shear rate becomes very large, and the viscosities decrease by several orders of magnitude. This shows that premelting films can act as an efficient lubrication layer despite their small thickness and illustrates an interesting interplay between confinement enhanced viscosities and shear thinning. Our results suggest that the strongly thinned viscosities that operate under the high speed skating regime could largely reduce the amount of frictional heating.

4.
Nanoscale ; 15(48): 19820, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38019680

RESUMO

Correction for 'Pursuing colloidal diamonds' by Lukasz Baran et al., Nanoscale, 2023, 15, 10623-10633, https://doi.org/10.1039/D3NR01771K.

5.
Nanoscale ; 15(25): 10623-10633, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37310349

RESUMO

The endeavor to selectively fabricate a cubic diamond is challenging due to the formation of competing phases such as its hexagonal polymorph or others possessing similar free energy. The necessity to achieve this is of paramount importance since the cubic diamond is the only polymorph exhibiting a complete photonic bandgap, making it a promising candidate in view of photonic applications. Herein, we demonstrate that due to the presence of an external field and delicate manipulation of its strength we can attain selectivity in the formation of a cubic diamond in a one-component system comprised of designer tetrahedral patchy particles. The driving force of such a phenomenon is the structure of the first adlayer which is commensurate with the (110) face of the cubic diamond. Moreover, after a successful nucleation event, once the external field is turned off, the structure remains stable, paving an avenue for further post-synthetic treatment.


Assuntos
Diamante , Fótons , Diamante/química
6.
ACS Omega ; 8(21): 18863-18873, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273616

RESUMO

We use Monte Carlo simulations to investigate the behavior of Janus spheres composed of attractive and repulsive parts confined between two parallel solid surfaces. The slits with identical and competing walls are studied. The adsorption isotherms of Janus particles are determined, and the impact of the density in the pore on the morphology is discussed in detail. So far, this issue has not been systematically investigated. New, unique structures are observed along the isotherms, including the bilayer and three-layer structures located at different distances from the walls. We analyze how selected parameters affect the positional and orientational ordering in these layers. In some cases, the particles form highly ordered hexagonal lattices.

7.
J Chem Phys ; 158(6): 064503, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792509

RESUMO

With an ever-increasing interest in water properties, many intermolecular force fields have been proposed to describe the behavior of water. Unfortunately, good models for liquid water usually cannot provide simultaneously an accurate melting point for ice. For this reason, the TIP4P/Ice model was developed for targeting the melting point and has become the preferred choice for simulating ice at coexistence. Unfortunately, available data for its dynamic properties in the liquid state are scarce. Therefore, we demonstrate a series of simulations aimed at the calculation of transport coefficients for the TIP4P/Ice model over a large range of thermodynamic conditions, ranging from T = 245 K to T = 350 K, for the temperature, and from p = 0 to p = 500 MPa, for the pressure. We have found that the self-diffusion (shear viscosity) exhibits smaller (increased) values than TIP4P/2005 and experiments. However, rescaling the temperature with respect to the triple point temperature, as in a corresponding states plot, we find that TIP4P/Ice compares very well with TIP4P/2005 and experiment. Such observations allow us to infer that despite the different original purposes of these two models examined here, one can benefit from a vast number of reports regarding the behavior of transport coefficients for the TIP4P/2005 model and utilize them following the routine described in this paper.

8.
Proc Natl Acad Sci U S A ; 119(49): e2209545119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442119

RESUMO

The origin of ice slipperiness has been a matter of great controversy for more than a century, but an atomistic understanding of ice friction is still lacking. Here, we perform computer simulations of an atomically smooth substrate sliding on ice. In a large temperature range between 230 and 266 K, hydrophobic sliders exhibit a premelting layer similar to that found at the ice/air interface. On the contrary, hydrophilic sliders show larger premelting and a strong increase of the first adsorption layer. The nonequilibrium simulations show that premelting films of barely one-nanometer thickness are sufficient to provide a lubricating quasi-liquid layer with rheological properties similar to bulk undercooled water. Upon shearing, the films display a pattern consistent with lubricating Couette flow, but the boundary conditions at the wall vary strongly with the substrate's interactions. Hydrophobic walls exhibit large slip, while hydrophilic walls obey stick boundary conditions with small negative slip. By compressing ice above atmospheric pressure, the lubricating layer grows continuously, and the rheological properties approach bulk-like behavior. Below 260 K, the equilibrium premelting films decrease significantly. However, a very large slip persists on the hydrophobic walls, while the increased friction on hydrophilic walls is sufficient to melt ice and create a lubrication layer in a few nanoseconds. Our results show that the atomic-scale frictional behavior of ice is a combination of spontaneous premelting, pressure melting, and frictional heating.


Assuntos
Gelo , Tartarugas , Animais , Fricção , Lubrificação , Filmes Cinematográficos , Adsorção
9.
ACS Omega ; 6(39): 25193-25200, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632178

RESUMO

We use coarse-grained molecular dynamics simulations to investigate the phase behavior of binary mixtures of di-substituted polyphenyl-like compounds and metal atoms of different sizes. We have estimated the possible on-surface behavior that could be useful for the target design of particular ordered networks. We have found that due to the variation of system conditions, we can observe the formation of the parallel, square, and triangular networks, Archimedean tessellation, and "spaghetti wires." All of these structures have been characterized by various order parameters.

10.
Beilstein J Nanotechnol ; 11: 884-890, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566438

RESUMO

We introduce a molecular dynamics (MD) coarse-grained model for the description of tripod building blocks. This model has been used by us already for linear, V-shape, and tetratopic molecules. We wanted to further extend its possibilities to trifunctional molecules to prove its versatility. For the chosen systems we have also compared the MD results with Monte Carlo results on a triangular lattice. We have shown that the constraints present in the latter method can enforce the formation of completely different structures, not reproducible with off-lattice simulations. In addition to that, we have characterized the obtained structures regarding various parameters such as theoretical diffraction pattern and average association number.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...