Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magy Onkol ; 59(4): 292-301, 2015 Dec.
Artigo em Húngaro | MEDLINE | ID: mdl-26665189

RESUMO

Tumour cell metabolism can be influenced by alterations of the extracellular microenvironment and the tumour-promoting genetically changed mechanisms. There is increasing interest to introduce appropriate bioenergetic assays to describe the therapeutic effect and metabolic subtypes of tumours in clinical oncology. The analysis of 14C-glucose and 14C-acetate oxidation could be a suitable method to examine the metabolic/bioenergetic profiles of tumour cells and tumorous host organisms. The metabolic activity of tumour cells (in vitro cell lines, primary human lymphocytes and leukaemia cells) and the tumourous host organism were examined in vitro and in vivo by detecting the released CO2 levels derived from the radioactive carbon atom labelled energy substrates. We have found that the most cancer cells of solid tumours oxidised glucose more intensively than acetate. It was interesting that AML, CML and CLL cells isolated from blood preferred acetate as an energy substrate in vitro. Furthermore, based on our observations, tumours affected the glucose or acetate oxidation of the organism when applying bioenergetic substrates per os or iv. We provided the first data about the alterations in metabolic profiles of the tumour bearing organism in xenograft models. In summary, according to our results, comparison of the energy substrate oxidation can be an indicative method related to the metabolic profile analysis of tumour cells in vitro and tumorous host organism in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...