Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 761, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909140

RESUMO

Replicative senescence is triggered when telomeres reach critically short length and activate permanent DNA damage checkpoint-dependent cell cycle arrest. Mitochondrial dysfunction and increase in oxidative stress are both features of replicative senescence in mammalian cells. However, how reactive oxygen species levels are controlled during senescence is elusive. Here, we show that reactive oxygen species levels increase in the telomerase-negative cells of Saccharomyces cerevisiae during replicative senescence, and that this coincides with the activation of Hog1, a mammalian p38 MAPK ortholog. Hog1 counteracts increased ROS levels during replicative senescence. While Hog1 deletion accelerates replicative senescence, we found this could stem from a reduced cell viability prior to telomerase inactivation. ROS levels also increase upon telomerase inactivation when Mec1, the yeast ortholog of ATR, is mutated, suggesting that oxidative stress is not simply a consequence of DNA damage checkpoint activation in budding yeast. We speculate that oxidative stress is a conserved hallmark of telomerase-negative eukaryote cells, and that its sources and consequences can be dissected in S. cerevisiae.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases Ativadas por Mitógeno , Estresse Oxidativo , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Telomerase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/metabolismo , Telomerase/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Dano ao DNA
2.
Genes (Basel) ; 14(3)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36980890

RESUMO

Telomeres are structures made of DNA, proteins and RNA found at the ends of eukaryotic linear chromosomes. These dynamic nucleoprotein structures protect chromosomal tips from end-to-end fusions, degradation, activation of damage checkpoints and erroneous DNA repair events. Telomeres were thought to be transcriptionally silent regions because of their constitutive heterochromatin signature until telomeric long non-coding RNAs (LncRNAs) were discovered. One of them, TERRA (TElomeric Repeat-containing RNA), starts in the subtelomeric regions towards the chromosome ends from different telomeres and has been extensively studied in many evolutionarily distant eukaryotes. Changes in TERRA's expression can lead to telomeric dysfunction, interfere with the replicative machinery and impact telomere length. TERRA also co-localizes in vivo with telomerase, and can form RNA:DNA hybrid structures called R-loops, which have been implicated in the onset of senescence and the alternative lengthening of telomere (ALT) pathway. Yet, the molecular mechanisms involving TERRA, as well as its function, remain elusive. Here, we review the current knowledge of TERRA transcription, structure, expression, regulation and its multiple telomeric and extra-telomeric functions in the budding yeast Saccharomyces cerevisiae.


Assuntos
RNA Longo não Codificante , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Longo não Codificante/metabolismo , Transcrição Gênica , Telômero/genética , Telômero/metabolismo , Heterocromatina
3.
Cell Death Differ ; 30(5): 1349-1365, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36869180

RESUMO

Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way. Indeed, replication stress-induced ROS (RIR) activate FOXO1-controlled detoxification genes such as SEPP1, catalase, GPX1, and SOD2. Primary cells tightly control the production of RIR: They are excluded from the nucleus and are produced by the cellular NADPH oxidases DUOX1/DUOX2, whose expression is controlled by NF-κB, which is activated by PARP1 upon replication stress. In parallel, inflammatory cytokine gene expression is induced through the NF-κB-PARP1 axis upon nonblocking replication stress. Increasing replication stress intensity accumulates DNA double-strand breaks and triggers the suppression of RIR by p53 and ATM. These data underline the fine-tuning of the cellular response to stress that protects genome stability maintenance, showing that primary cells adapt their responses to replication stress severity.


Assuntos
NADPH Oxidases , NF-kappa B , Humanos , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Citocinas/genética , Instabilidade Genômica
4.
Sci Adv ; 7(35)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34452908

RESUMO

Double-strand breaks (DSBs) are harmful lesions and a major cause of genome instability. Studies have suggested a link between the nuclear envelope and the DNA damage response. Here, we show that lamin B1, a major component of the nuclear envelope, interacts directly with 53BP1 protein, which plays a pivotal role in the DSB repair. This interaction is dissociated after DNA damage. Lamin B1 overexpression impedes 53BP1 recruitment to DNA damage sites and leads to a persistence of DNA damage, a defect in nonhomologous end joining and an increased sensitivity to DSBs. The identification of interactions domains between lamin B1 and 53BP1 allows us to demonstrate that the defect of 53BP1 recruitment and the DSB persistence upon lamin B1 overexpression are due to sequestration of 53BP1 by lamin B1. This study highlights lamin B1 as a factor controlling the recruitment of 53BP1 to DNA damage sites upon injury.


Assuntos
Quebras de DNA de Cadeia Dupla , Lamina Tipo B , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
5.
Biol Chem ; 402(10): 1257-1268, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33977679

RESUMO

The protease activities are tightly regulated by inhibitors and dysregulation contribute to pathological processes such as cancer and inflammatory disorders. Tissue factor pathway inhibitor 2 (TFPI-2) is a serine proteases inhibitor, that mainly inhibits plasmin. This protease activated matrix metalloproteases (MMPs) and degraded extracellular matrix. Other serine proteases are implicated in these mechanisms like kallikreins (KLKs). In this study, we identified for the first time that TFPI-2 is a potent inhibitor of KLK5 and 12. Computer modeling showed that the first Kunitz domain of TFPI-2 could interact with residues of KLK12 near the catalytic triad. Furthermore, like plasmin, KLK12 was able to activate proMMP-1 and -3, with no effect on proMMP-9. Thus, the inhibition of KLK12 by TFPI-2 greatly reduced the cascade activation of these MMPs and the cleavage of cysteine-rich 61, a matrix signaling protein. Moreover, when TFPI-2 bound to extracellular matrix, its classical localisation, the KLK12 inhibition was retained. Finally, TFPI-2 was downregulated in human non-small-cell lung tumour tissue as compared with non-affected lung tissue. These data suggest that TFPI-2 is a potent inhibitor of KLK12 and could regulate matrix remodeling and cancer progression mediated by KLK12.


Assuntos
Glicoproteínas , Calicreínas , Carcinoma Pulmonar de Células não Pequenas , Humanos , Lipoproteínas , Neoplasias Pulmonares
6.
Nucleic Acids Res ; 44(2): 648-56, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26446986

RESUMO

To rescue collapsed replication forks cells utilize homologous recombination (HR)-mediated mechanisms to avoid the induction of gross chromosomal abnormalities that would be generated by non-homologous end joining (NHEJ). Using DNA interstrand crosslinks as a replication barrier, we investigated how the Fanconi anemia (FA) pathway promotes HR at stalled replication forks. FA pathway inactivation results in Fanconi anemia, which is associated with a predisposition to cancer. FANCD2 monoubiquitination and assembly in subnuclear foci appear to be involved in TIP60 relocalization to the chromatin to acetylates histone H4K16 and prevents the binding of 53BP1 to its docking site, H4K20Me2. Thus, FA pathway loss-of-function results in accumulation of 53BP1, RIF1 and RAP80 at damaged chromatin, which impair DNA resection at stalled replication fork-associated DNA breaks and impede HR. Consequently, DNA repair in FA cells proceeds through the NHEJ pathway, which is likely responsible for the accumulation of chromosome abnormalities. We demonstrate that the inhibition of NHEJ or deacetylase activity rescue HR in FA cells.


Assuntos
Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Anemia de Fanconi/metabolismo , Histona Acetiltransferases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Acetilação , Proteínas de Transporte/genética , Cromatina/efeitos dos fármacos , Cromatina/genética , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Histona Acetiltransferases/genética , Chaperonas de Histonas , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina Acetiltransferase 5 , Proteína Homóloga a MRE11 , Mitomicina/farmacologia , Proteínas Nucleares/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitinação
7.
Tumour Biol ; 36(7): 4979-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25677900

RESUMO

The KLK13 gene is dysregulated in several carcinomas, and its expression levels seem to be associated with disease prognosis. The aim of our study was to investigate the prognostic potential of KLK13 mRNA expression for patients with nonsmall cell lung cancer (NSCLC). Total RNA was isolated from cancerous and normal tissues from a cohort of 128 NSCLC patients. The KLK13 mRNA transcription levels were measured using a sensitive quantitative RT-PCR method. The results were normalized by dividing the KLK13 mRNA values with the geometric mean of mRNA expression from four reference genes: beta-actin, TATA-binding protein, hypoxanthine phosphoribosyltransferase 1, and acidic ribosomal phosphoprotein P0. The malignant tissues from the majority of patients (59.3 %) contained significantly more KLK13 mRNA transcripts than did the paired nonmalignant tissues (median difference 11.1-fold, P = 0.008). KLK13 was expressed at higher levels in females than that in males (P = 0.021). No other statistically significant association with clinicopathological data was observed. Kaplan-Meier survival analyses demonstrated that patients with KLK13-positive tumors survived significantly longer than those with KLK13-negative ones (P = 0.009). KLK13 expression was also shown to be able to stratify high-risk individuals among patients with early disease stages (P = 0.030). Multivariate Cox regression analysis showed that KLK13 expression is a favorable, independent prognostic indicator of overall survival (OS) (P = 0.024). Our results suggest that KLK13 mRNA expression constitutes a novel biomarker for the prediction of overall survival in NSCLC and that its quantitative assessment in tumor tissues can aid in treatment decision making.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Calicreínas/genética , Prognóstico , Adulto , Idoso , Biomarcadores Tumorais/biossíntese , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Calicreínas/biossíntese , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/biossíntese
8.
Proc Natl Acad Sci U S A ; 111(2): 763-8, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24347643

RESUMO

Homologous recombination deficient (HR(-)) mammalian cells spontaneously display reduced replication fork (RF) movement and mitotic extra centrosomes. We show here that these cells present a complex mitotic phenotype, including prolonged metaphase arrest, anaphase bridges, and multipolar segregations. We then asked whether the replication and the mitotic phenotypes are interdependent. First, we determined low doses of hydroxyurea that did not affect the cell cycle distribution or activate CHK1 phosphorylation but did slow the replication fork movement of wild-type cells to the same level than in HR(-) cells. Remarkably, these low hydroxyurea doses generated the same mitotic defects (and to the same extent) in wild-type cells as observed in unchallenged HR(-) cells. Reciprocally, supplying nucleotide precursors to HR(-) cells suppressed both their replication deceleration and mitotic extra centrosome phenotypes. Therefore, subtle replication stress that escapes to surveillance pathways and, thus, fails to prevent cells from entering mitosis alters metaphase progression and centrosome number, resulting in multipolar mitosis. Importantly, multipolar mitosis results in global unbalanced chromosome segregation involving the whole genome, even fully replicated chromosomes. These data highlight the cross-talk between chromosome replication and segregation, and the importance of HR at the interface of these two processes for protection against general genome instability.


Assuntos
Instabilidade Cromossômica/fisiologia , Replicação do DNA/fisiologia , Recombinação Homóloga/fisiologia , Mitose/fisiologia , Animais , Afidicolina , Linhagem Celular , Centrossomo/fisiologia , Segregação de Cromossomos/fisiologia , Cricetinae , Cricetulus , Citometria de Fluxo , Hidroxiureia/metabolismo , Microscopia de Vídeo , Estatísticas não Paramétricas , Imagem com Lapso de Tempo
9.
Cell Rep ; 5(1): 21-8, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24095737

RESUMO

The choice of the appropriate double-strand break (DSB) repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp) generated by alternative end-joining (A-EJ). BLM represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role for BLM that influences the DSB repair pathway choice: (1) protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2) promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid unscheduled resection that might jeopardize genome integrity.


Assuntos
Proteínas de Transporte/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/metabolismo , Transfecção
10.
Nucleus ; 3(5): 411-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22895091

RESUMO

Progeroid phenotypes are mainly encountered in 2 types of syndromes: in laminopathies, which are characterized by nuclear shape abnormalities due to lamin A alteration, and in DNA damage response defect syndromes. Because lamin A dysregulation leads to DNA damages, it has been proposed that senescence occurs in both types of syndromes through the accumulation of damages. We recently showed that elevated oxidative stress is responsible for lamin B1 accumulation, nuclear shape alteration and senescence in the DDR syndrome, ataxia telangiectasia (A-T). Interestingly, overexpression of lamin B1 in wild type cells is sufficient to induce senescence without the induction of DNA damages. Here, we will discuss the importance of controlling the lamins level in order for maintenance nuclear architecture and we will comment the relationships of lamins with other senescence mechanisms. Finally, we will describe emerging data reporting redox control by lamins, leading us to propose a general mechanism by which reactive oxygen species can induce senescence through lamin dysregulation and NSA.


Assuntos
Núcleo Celular/metabolismo , Senescência Celular , Lamina Tipo A/metabolismo , Lamina Tipo B/metabolismo , Estresse Oxidativo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Forma do Núcleo Celular , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Oxirredução , Progéria/metabolismo , Progéria/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Telômero/metabolismo , Proteínas Supressoras de Tumor/metabolismo
11.
Am J Cancer Res ; 2(3): 249-68, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22679557

RESUMO

A DNA double strand break (DSB) is a highly toxic lesion, which can generate genetic instability and profound genome rearrangements. However, DSBs are required to generate diversity during physiological processes such as meiosis or the establishment of the immune repertoire. Thus, the precise regulation of a complex network of processes is necessary for the maintenance of genomic stability, allowing genetic diversity but protecting against genetic instability and its consequences on oncogenesis. Two main strategies are employed for DSB repair: homologous recombination (HR) and non-homologous end-joining (NHEJ). HR is initiated by single-stranded DNA (ssDNA) resection and requires sequence homology with an intact partner, while NHEJ requires neither resection at initiation nor a homologous partner. Thus, resection is an pivotal step at DSB repair initiation, driving the choice of the DSB repair pathway employed. However, an alternative end-joining (A-EJ) pathway, which is highly mutagenic, has recently been described; A-EJ is initiated by ssDNA resection but does not require a homologous partner. The choice of the appropriate DSB repair system, for instance according the cell cycle stage, is essential for genome stability maintenance. In this context, controlling the initial events of DSB repair is thus an essential step that may be irreversible, and the wrong decision should lead to dramatic consequences. Here, we first present the main DSB repair mechanisms and then discuss the importance of the choice of the appropriate DSB repair pathway according to the cell cycle phase. In a third section, we present the early steps of DSB repair i.e., DSB signaling, chromatin remodeling, and the regulation of ssDNA resection. In the last part, we discuss the competition between the different DSB repair mechanisms. Finally, we conclude with the importance of the fine tuning of this network for genome stability maintenance and for tumor protection in fine.

12.
EMBO J ; 31(5): 1080-94, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22246186

RESUMO

We report crosstalk between three senescence-inducing conditions, DNA damage response (DDR) defects, oxidative stress (OS) and nuclear shape alterations. The recessive autosomal genetic disorder Ataxia telangiectasia (A-T) is associated with DDR defects, endogenous OS and premature ageing. Here, we find frequent nuclear shape alterations in A-T cells, as well as accumulation of the key nuclear architecture component lamin B1. Lamin B1 overexpression is sufficient to induce nuclear shape alterations and senescence in wild-type cells, and normalizing lamin B1 levels in A-T cells reciprocally reduces both nuclear shape alterations and senescence. We further show that OS increases lamin B1 levels through p38 Mitogen Activated Protein kinase activation. Lamin B1 accumulation and nuclear shape alterations also occur during stress-induced senescence and oncogene-induced senescence (OIS), two canonical senescence situations. These data reveal lamin B1 as a general molecular mediator that controls OS-induced senescence, independent of established Ataxia Telangiectasia Mutated (ATM) roles in OIS.


Assuntos
Envelhecimento , Lamina Tipo B/metabolismo , Estresse Oxidativo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Humanos
13.
Cancer Res ; 71(10): 3590-602, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21444675

RESUMO

Genetic stability requires coordination of a network of pathways including DNA repair/recombination and apoptosis. In addition to its canonical anti-apoptotic role, Bcl-2 negatively impacts genome stability. In this study, we identified the breast cancer tumor suppressor BRCA1, which plays an essential role in homologous recombination (HR), as a target for Bcl-2 in the repression of HR. Indeed, ionizing radiation-induced BRCA1 foci assembly was repressed when Bcl-2 was expressed ectopically, in human SV40 fibroblasts, or spontaneously, in lymphoma t(14:18) cells and in HeLa and H460 cancer cell lines. Moreover, we showed that the transmembrane (TM) domain of Bcl-2 was required for both inhibition of BRCA1 foci assembly and the inhibition of HR induced by a double-strand break targeted into an intrachromosomal HR substrate by the meganuclease I-SceI. Fluorescence confocal microscopy, proximity ligation assay, and electron microscopy analyses as well as Western blot analysis of subcellular fractions showed that Bcl-2 and BRCA1 colocalized to mitochondria and endoplasmic reticulum in a process requiring the TM domain of Bcl-2. Targeting BRCA1 to the endomembranes depletes BRCA1 from the nucleus and, thus, accounts for the inhibition of HR. Furthermore, our findings support an apoptosis-stimulatory role for the cytosolic form of BRCA1, suggesting a new tumor suppressor function of BRCA1. Together, our results reveal a new mode of BRCA1 regulation and for HR in the maintenance of genome stability.


Assuntos
Membrana Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes BRCA1 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Recombinação Genética , Linhagem Celular Tumoral , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Mitocôndrias/metabolismo , Modelos Genéticos , Frações Subcelulares/metabolismo
14.
Oncol Rep ; 17(4): 713-9, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17342305

RESUMO

Any factor affecting BRCA gene regulation may be of interest in the prevention of breast tumourigenesis. We studied the influence of dietary docosahexaenoic acid (DHA), a major omega-3 fatty acid present in marine products, on rat autochthonous mammary tumourigenesis. DHA-supplementation significantly reduced the incidence of tumours (30%, P=0.007) and led to a 60% increase (P=0.02) in BRCA1 protein level. Since DHA influences the product of a major tumour suppressor gene, this finding may contribute to the observation that high-fish consumption reduces the risk of breast cancer.


Assuntos
Proteína BRCA1/metabolismo , Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Graxos Ômega-3/administração & dosagem , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/prevenção & controle , Animais , Proteína BRCA1/análise , Proteína BRCA1/genética , Feminino , Neoplasias Mamárias Animais/química , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima
15.
Int J Biochem Cell Biol ; 39(4): 774-86, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17307016

RESUMO

Ionic channel activity is involved in fundamental cellular behaviour and participates in cancerous features such as proliferation, migration and invasion which in turn contribute to the metastatic process. In this study, we investigated the expression and role of voltage-gated sodium channels in non-small-cell lung cancer cell lines. Functional voltage-gated sodium channels expression was investigated in normal and non-small-cell lung cancer cell lines. The measurement, in patch-clamp conditions, of tetrodotoxin-inhibitable sodium currents indicated that the strongly metastatic cancerous cell lines H23, H460 and Calu-1 possess functional sodium channels while normal and weakly metastatic cell lines do not. While all the cell lines expressed mRNA for numerous sodium channel isoforms, only H23, H460 and Calu-1 cells had a 250 kDa protein corresponding to the functional channel. The other cell lines also had another protein of 230 kDa which is not addressed to the membrane and might act as a dominant negative isoform to prevent channel activation. At the membrane potential of these cells, channels are partially open. This leads to a continuous entry of sodium, disrupting sodium homeostasis and down-stream signaling pathways. Inhibition of the channels by tetrodotoxin was responsible for a 40-50% reduction of in vitro invasion. These experiments suggest that the functional expression of voltage-gated sodium channels might be an integral component of the metastatic process in non-small-cell lung cancer cells probably through its involvement in the regulation of intracellular sodium homeostasis. These channels could serve both as novel markers of the metastatic phenotype and as potential new therapeutic targets.


Assuntos
Movimento Celular/fisiologia , Canais de Sódio/fisiologia , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Homeostase/efeitos dos fármacos , Humanos , Líquido Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/fisiopatologia , Potenciais da Membrana/efeitos dos fármacos , Microscopia Confocal , Invasividade Neoplásica , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sódio/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Tetrodotoxina/farmacologia
16.
Int J Biochem Cell Biol ; 38(2): 196-208, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16194618

RESUMO

Long-chain omega-3 polyunsaturated fatty acids are thought to inhibit the development of breast cancer. We investigated the effects of docosahexaenoic and eicosapentaenoic acids on the proliferation of MDA-MB-231 human mammary epithelial cells. Both docosahexaenoic and eicosapentaenoic acids decreased cell growth with a higher efficiency for docosahexaenoic acid (87% at 100 microM versus 74% for eicosapentaenoic acid). The effect on specific cell cycle phases was studied. G2/M duration was markedly increased by docosahexaenoic and by eicosapentaenoic acids (respectively by more than seven- and six-fold at 50 microM) when cells were synchronized at the G1/S boundary and released in the cell cycle. In contrast, there was no alteration of G1 or S phases. The expression of cyclin A, cyclin B1 and cyclin-dependent kinase 1, the regulators required for the progression from G2 to mitosis, were all decreased by these fatty acids (western blot). Since omega-3 fatty acids had no effect on the S phase, thus ruling out an involvement of cyclin A in their anti-proliferative effect, we examined whether the regulation of the cyclin-dependent kinase 1-cyclin B1 complex was altered. Upon omega-3 fatty acids treatment, cyclin B1 phosphorylation was inhibited and the expression of the cell division cycle 25C phosphatase, which dephosphorylates cyclin-dependent kinase 1, was decreased. We conclude that the anti-proliferative effect of omega-3 fatty acids occurs via the regulation of the cyclin-dependent kinase 1-cyclin B1 complex.


Assuntos
Antineoplásicos/metabolismo , Neoplasias da Mama/metabolismo , Proteína Quinase CDC2/metabolismo , Proliferação de Células , Ciclina B/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Apoptose/fisiologia , Proteína Quinase CDC2/genética , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Ciclina B/genética , Ciclina B1 , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Feminino , Humanos , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...