Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 44 Suppl 1: e1127-30, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16797639

RESUMO

The objective of the research presented here is the investigation of the interaction of guided waves with welds, defects and other non-uniformities in steel plates loaded by liquid. The investigation has been performed using numerical simulation for 2D and 3D cases by the finite differences method, finite element method and measurement of 3D distributions of acoustic fields. Propagation of the S(0) mode in a steel plate and its interaction with non-uniformities was investigated. It was shown that using the measured leaky wave signals in the water loading of the steel plate and by application of signal processing, the 3D ultrasonic field structure inside and outside of the plate can be reconstructed. The presence of leaky wave signals over the defect caused by the mode conversion of Lamb waves has been proved using the numerical modelling and experimental investigations. The developed signal and data processing enables to visualise dynamics of ultrasonic fields over the plate, and also to estimate spatial positions of defects inside the steel plates.

2.
Ultrasonics ; 40(1-8): 853-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12160058

RESUMO

Ultrasound velocity measurements in medicine and biology usually are performed using relatively small measurement chambers. When the pulse-echo method is used, the presence of the reflector close to the transducer can cause essential diffraction errors. These errors may be reduced using an additional buffer rod as a waveguide between the transducer and the measurement chamber. The objective of the presented work was analysis of diffraction errors in measurement chambers with a buffer rod. The work was performed in two steps. In the first stage propagation of transient ultrasonic waves in a buffer rod was analysed using an axisymmetric finite element model. This approach enables all dimensions of the measurement chamber and the waveguide to be taken into account, but is less accurate in the time domain. In the second step the absolute values of diffraction errors were evaluated using a mixed analytic-numeric disk shaped transducer diffraction model. In this case only the dimensions of the waveguide and measurement chamber along the wave propagation direction were taken into account. Diffraction errors were calculated by simulating small changes of ultrasound velocity in the liquid under investigation. The simulation performed allowed optimisation of the dimensions of the measurement chamber and a buffer rod thus minimising measurement errors.


Assuntos
Ultrassonografia Doppler de Pulso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA