Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Laryngoscope ; 134(3): 1299-1307, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37668315

RESUMO

OBJECTIVE: With the shift toward utilization of sentinel lymph node biopsy (SLNB) in oral cavity cancer, improved techniques for intraoperative sentinel node identification are needed. This study investigates the feasibility of fluorescently labeled tilmanoscept in SLNB in an oral cancer rabbit model. METHODS: An animal study was designed using 21 healthy male New Zealand rabbits. Gallium-68-labeled tilmanocept labeled with IRDye800CW was injected submucosally into the buccal mucosa (n = 6) or lateral tongue (n = 7) followed by PET imaging. One hour after injection, SLNB was performed using fluorescence imaging followed by a bilateral neck dissection and sampling of non-nodal surrounding tissue. All tissues were measured for radioactivity and fluorescence. In addition, eight rabbits were injected with delayed SLNB performed 48 h after injection. RESULTS: Buccal injections all had ipsilateral SLN drainage and tongue injections exhibited 18.2% contralateral drainage. An average of 1.9 ± 1.0 SLN (range 1-5) were identified. In addition, an average of 16.9 ± 3.3 non-sentinel lymph nodes were removed per animal. SLNs had an average of 0.69 ± 0.60 percent-of-injected dose (%ID) compared with non-sentinel nodes with 0.012 ± 0.025 %ID and surrounding tissue with 0.0067 ± 0.015 %ID. There was 98.0% agreement between sentinel lymph nodes identified using fluorescence compared to radioactivity with Cohen's kappa coefficient of 0.879. In 48-h delayed SLNB, results were consistent with 97.8% agreement with radioactivity and Cohen's Kappa coefficient of 0.884. Fluorescence identified additional lymph nodes that were not identified by radioactivity, and with one false negative. CONCLUSION: Fluorescent-labeled Tc-99 m-tilmanocept represents a highly accurate adjunct to enhance SLNB for oral cavity cancer. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1299-1307, 2024.


Assuntos
Neoplasias Bucais , Linfonodo Sentinela , Masculino , Animais , Coelhos , Biópsia de Linfonodo Sentinela/métodos , Linfonodos/patologia , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/cirurgia , Linfonodo Sentinela/patologia , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/cirurgia , Neoplasias Bucais/patologia
2.
PLoS Pathog ; 19(9): e1011487, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747931

RESUMO

Select prion diseases are characterized by widespread cerebral plaque-like deposits of amyloid fibrils enriched in heparan sulfate (HS), a abundant extracellular matrix component. HS facilitates fibril formation in vitro, yet how HS impacts fibrillar plaque growth within the brain is unclear. Here we found that prion-bound HS chains are highly sulfated, and that the sulfation is essential for accelerating prion conversion in vitro. Using conditional knockout mice to deplete the HS sulfation enzyme, Ndst1 (N-deacetylase / N-sulfotransferase) from neurons or astrocytes, we investigated how reducing HS sulfation impacts survival and prion aggregate distribution during a prion infection. Neuronal Ndst1-depleted mice survived longer and showed fewer and smaller parenchymal plaques, shorter fibrils, and increased vascular amyloid, consistent with enhanced aggregate transit toward perivascular drainage channels. The prolonged survival was strain-dependent, affecting mice infected with extracellular, plaque-forming, but not membrane bound, prions. Live PET imaging revealed rapid clearance of recombinant prion protein monomers into the CSF of neuronal Ndst1- deficient mice, neuronal, further suggesting that HS sulfate groups hinder transit of extracellular prion protein monomers. Our results directly show how a host cofactor slows the spread of prion protein through the extracellular space and identify an enzyme to target to facilitate aggregate clearance.


Assuntos
Neurônios , Doenças Priônicas , Príons , Sulfotransferases , Animais , Camundongos , Heparitina Sulfato/metabolismo , Camundongos Knockout , Neurônios/enzimologia , Doenças Priônicas/metabolismo , Proteínas Priônicas/genética , Príons/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
3.
Psychiatry Res Neuroimaging ; 321: 111445, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101828

RESUMO

Despite increased survivability for people living with HIV (PLWH), HIV-related cognitive deficits persist. Determining biological mechanism(s) underlying abnormalities is critical to minimize the long-term impact of HIV. Positron emission tomography (PET) studies reveal that PLWH exhibit elevated neuroinflammation, potentially contributing to these problems. PLWH are hypersensitive to environmental insults that drive elevated inflammatory profiles. Gp120 is an envelope glycoprotein exposed on the surface of the HIV envelope which enables HIV entry into a cell contributing to HIV-related neurotoxicity. In vivo evidence for mice overexpressing gp120 (transgenic) mice exhibiting neuroinflammation remains unclear. Here, we conducted microPET imaging in gp120 transgenic and wildtype mice, using the radiotracer [(18)F]FEPPA (binds to the translocator protein expressed by activated microglial serving as a neuroinflammatory marker). Imaging was performed at baseline and 24 h after lipopolysaccharide (LPS; 5 mg/kg) treatment (endotoxin that triggers an immune response). Gp120 transgenic mice exhibited elevated [(18F)]FEPPA in response to LPS vs. wildtype mice throughout the brain including dorsal and ventral striata, hypothalamus, and hippocampus. Gp120 transgenic mice are hypersensitive to environmental inflammatory insults, consistent with PLWH, measurable in vivo. It remains to-be-determined whether this heightened sensitivity is connected to the behavioral abnormalities of these mice or sensitive to any treatments.


Assuntos
Infecções por HIV , Receptores de GABA , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Infecções por HIV/complicações , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/metabolismo , Humanos , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
4.
Nucl Med Biol ; 92: 107-114, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32169304

RESUMO

INTRODUCTION: Blood-brain barrier (BBB) disruption and subsequent neuro-inflammation occur following traumatic brain injury (TBI), resulting in a spectrum of human nervous system disorders. [99mTc]Tc-tilmanocept is a receptor-binding radiopharmaceutical FDA-approved for sentinel lymph node mapping. We hypothesize that after an intravenous (i.v.) injection, [99mTc]Tc-tilmanocept, will traverse a disrupted BBB and bind to CD206-bearing microglial cells. METHODS: Age-matched mice were divided into three groups: 5-days post TBI (n = 4), and 5-days post sham (n = 4), and naïve controls (n = 4). IRDye800CW-labeled [99mTc]Tc-tilmanocept (0.15 nmol per gram body weight) and FITC-labeled bovine serum albumin (FITC-BSA) were injected (i.v.) into each mouse. Mice were imaged with a high-resolution gamma camera for 45 min. Immediately after imaging, the brains were perfused with fixative, excised, imaged with a fluorescence scanner, assayed for radioactivity, and prepared for histology. RESULTS: In vivo nuclear imaging, ex vivo fluorescence imaging, ex vivo gamma well counting, and histo-microscopy demonstrated enhanced tilmanocept uptake in the TBI region. The normalized [99mTc]Tc-tilmanocept uptake value from nuclear imaging and the maximum pixel intensity from fluorescence imaging of the TBI group (1.12 ±â€¯0.12 and 2288 ±â€¯278 a.u., respectively) were significantly (P < 0.04) higher than the sham group (0.64 ±â€¯0.28 and 1708 ±â€¯101 a.u., respectively) and the naive group (0.76 ±â€¯0.24 and 1643 ±â€¯391 a.u., respectively). The mean [99mTc]Tc-tilmanocept scaled uptake in the TBI brains (0.058 ±â€¯0.013%/g) was significantly (P < 0.010) higher than the scaled brain uptake of the sham group (0.031 ±â€¯0.011%/g) and higher (P = 0.04) than the uptake of the naïve group (0.020 ±â€¯0.002%/g). Fluorescence microscopy demonstrated increased uptake of the IRDye800CW-tilmanocept and FITC-BSA in the TBI brain regions. CONCLUSION: [99mTc]Tc-tilmanocept traverses disrupted blood-brain barrier and localizes within the injured region. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: [99mTc]Tc-tilmanocept could serve as an imaging biomarker for TBI-associated neuroinflammation and any disease process that involves a disruption of the blood-brain barrier.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Dextranos/metabolismo , Mananas/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Pentetato de Tecnécio Tc 99m/análogos & derivados , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Pentetato de Tecnécio Tc 99m/metabolismo
5.
Appl Surf Sci ; 4992020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32863496

RESUMO

Marking colon tumors for surgery is normally done with the use of India ink. However, non-fluorescent dyes such as India ink cannot be imaged below the tissue surface and there is evidence for physiological complications such as abscess, intestinal perforation and inconsistency of dye injection. A novel infrared marker was developed using FDA approved indocyanine green (ICG) dye and ultrathin hollow silica nanoshells (ICG/HSS). Using a positively charged amine linker, ICG was non-covalently adsorbed onto the nanoparticle surface. For ultra-thin wall 100 nm diameter silica shells, a bimodal ICG layer of < 3 nm is was formed. Conversely, for thicker walls on 2 µm diameter silica shells, the ICG layer was only bound to the outer surface and was 6 nm thick. In vitro testing of fluorescent emission showed the particles with the thinner coating were considerably more efficient, which is consistent with self-quenching reducing emission shown in the thicker ICG coatings. Ex-vivo testing showed that ICG bound to the 100 nm hollow silica shells was visible even under 1.5 cm of tissue. In vivo experiments showed that there was no diffusion of the ICG/nanoparticle marker in tissue and it remained imageable for as long as 12 days.

6.
Sci Adv ; 6(26): eaba4353, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32637608

RESUMO

Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase-mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.


Assuntos
Antirreumáticos , Artrite Reumatoide , Sinoviócitos , Animais , Antirreumáticos/uso terapêutico , Células Cultivadas , Fibroblastos/metabolismo , Camundongos , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Fator de Necrose Tumoral alfa/metabolismo
7.
J Am Chem Soc ; 141(30): 11765-11769, 2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31317744

RESUMO

We describe the design, synthesis, and antitumor activity of an 18 carbon α,ω-dicarboxylic acid monoconjugated via an ester linkage to paclitaxel (PTX). This 1,18-octadecanedioic acid-PTX (ODDA-PTX) prodrug readily forms a noncovalent complex with human serum albumin (HSA). Preservation of the terminal carboxylic acid moiety on ODDA-PTX enables binding to HSA in the same manner as native long-chain fatty acids (LCFAs), within hydrophobic pockets, maintaining favorable electrostatic contacts between the ω-carboxylate of ODDA-PTX and positively charged amino acid residues of the protein. This carrier strategy for small molecule drugs is based on naturally evolved interactions between LCFAs and HSA, demonstrated here for PTX. ODDA-PTX shows differentiated pharmacokinetics, higher maximum tolerated doses and increased efficacy in vivo in multiple subcutaneous murine xenograft models of human cancer, as compared to two FDA-approved clinical formulations, Cremophor EL-formulated paclitaxel (crPTX) and Abraxane (nanoparticle albumin-bound (nab)-paclitaxel).


Assuntos
Antineoplásicos/farmacologia , Ácidos Dicarboxílicos/farmacologia , Paclitaxel/farmacologia , Pró-Fármacos/farmacologia , Albumina Sérica Humana/química , Ácidos Esteáricos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Paclitaxel/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Ácidos Esteáricos/química
8.
J Nucl Med ; 60(9): 1325-1332, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30796169

RESUMO

An unmet need for the clinical management of chronic kidney disease is a predictive tool of kidney function during the first decade of the disease, when there is silent loss of glomerular function. The objective of this study was to demonstrate receptor-mediated binding of tilmanocept to CD206 within the kidney and provide evidence of kinetic sensitivity of this binding to renal function. Methods: Rats were positioned in a PET scanner with the liver and kidneys within the field of view. After an intravenous injection of 68Ga-IRDye800-tilmanocept, using 1 of 2 scaled molar doses (0.02 nmol/g, n = 5; or 0.10 nmol/g, n = 5), or coinjection (n = 3) of 68Ga-IRDye800-tilmanocept (0.10 nmol/g) and unlabeled tilmanocept (5.0 nmol/g), or a negative control, 68Ga-IRDye800-DTPA-galactosyl-dextran (0.02 nmol/g, n = 5), each animal was imaged for 20 min followed by a whole-body scan. Frozen kidney sections were stained for podocytes and CD206 using immunofluorescence. Molecular imaging of diabetic db/db mice (4.9 wk, n = 6; 7.3 wk, n = 4; 13.3 wk, n = 6) and nondiabetic db/m mice (n = 6) was performed with fluorescence-labeled 99mTc-tilmanocept (18.5 MBq, 2.6 nmol). Thirty minutes after injection, blood, liver, kidneys, and urine were assayed for radioactivity. Renal time-activity curves were generated. Results: Rat PET whole-body images and time-activity curves of 68Ga-IRDye800-tilmanocept demonstrated receptor-mediated renal accumulation with evidence of glomerular uptake. Activity within the renal cortex persisted during the 40-min study. Histologic examination demonstrated colocalization of CD206 and IRDye800-tilmanocept within the glomerulus. The glomerular accumulation of the coinjection and the negative control studies were significantly less than the CD206-targeted agent. The db/db mice displayed a multiphasic renal time-activity curve with high urinary bladder accumulation; the nondiabetic mice exhibited renal uptake curves dominated by a single phase with low bladder accumulation. Conclusion: This study demonstrated receptor-mediated binding to the glomerular mesangial cells and kinetic sensitivity of tilmanocept to chronic renal disease. Given the role of mesangial cells during the progression of diabetic nephropathy, PET or SPECT renal imaging with radiolabeled tilmanocept may provide a noninvasive quantitative assessment of glomerular function.


Assuntos
Dextranos/farmacocinética , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/diagnóstico por imagem , Células Mesangiais/metabolismo , Tomografia por Emissão de Pósitrons , Pentetato de Tecnécio Tc 99m/análogos & derivados , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Imuno-Histoquímica , Injeções Intravenosas , Cinética , Lectinas Tipo C/metabolismo , Fígado/metabolismo , Linfonodos/patologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Microscopia de Fluorescência , Imagem Molecular , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Receptores de Superfície Celular/metabolismo , Biópsia de Linfonodo Sentinela , Pentetato de Tecnécio Tc 99m/farmacocinética , Distribuição Tecidual , Imagem Corporal Total
9.
Chem Mater ; 31(1): 251-259, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33859455

RESUMO

In this paper, we show that gadolinium-loaded synthetic melanin nanoparticles (Gd(III)-SMNPs) exhibit up to a 40-fold enhanced photoacoustic signal intensity relative to synthetic melanin alone and higher than other metal-chelated SMNPs. This property makes these materials useful as dual labeling agents because Gd(III)-SMNPs also behave as magnetic resonance imaging (MRI) contrast agents. As a proof-of-concept, we used these nanoparticles to label human mesenchymal stem cells. Cellular uptake was confirmed with bright-field optical and transmission electron microscopy. The Gd(III)-SMNP-labeled stem cells continued to express the stem cell surface markers CD73, CD90, and CD105 and proliferate. The labeled stem cells were subsequently injected intramyocardially in mice, and the tissue was observed by photoacoustic and MR imaging. We found that the photoacoustic signal increased as the cell number increased (R 2 = 0.96), indicating that such an approach could be employed to discriminate between stem cell populations with a limit of detection of 2.3 × 104 cells in in vitro tests. This multimodal photoacoustic/MRI approach combines the excellent temporal resolution of photoacoustics with the anatomic resolution of MRI.

10.
PLoS One ; 13(7): e0197842, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29965996

RESUMO

Molecular imaging with a fluorescent version of Tilmanocept may permit an accurate and facile detection of sentinel nodes of endometrial cancer. Tilmanocept accumulates in sentinel lymph nodes (SLN) by binding to a cell surface receptor unique to macrophages and dendritic cells. Four female Yorkshire pigs underwent cervical stromal injection of IRDye800-Tilmanocept, a molecular imaging agent tagged with near-infrared fluorescent dye and radiolabeled with gallium-68 and technetium-99m. PET/CT scans 1.5 hours post-injection provided pre-operative SLN mapping. Robotic-assisted lymphadenectomy was performed two days after injection, using the FireFly imaging system to identify nodes demonstrating fluorescent signal. After removal of fluorescent nodes, pelvic and periaortic node dissections were performed. Nodes were assayed for technetium-99m activity, and SLNs were established using the "10%-rule", requiring that the radioactivity of additional SLNs be greater than 10% of the "hottest" SLN. Thirty-four nodal samples were assayed ex vivo for radioactivity. All the SLNs satisfying the "10%-rule" were detected using the FireFly system. Five fluorescent nodes were detected, corresponding with preoperative PET/CT scan. Three pigs had one SLN and one pig had two SLNs, with 100% concordance between fluorescence and radioactivity. Fluorescent-labeled Tilmanocept permits real-time intraoperative detection of SLNs during robotic-assisted lymphadenectomy for endometrial cancer in a porcine model. When radiolabeled with gallium-68, Tilmanocept allows for preoperative localization of SLNs using PET/CT, and shows specificity to SLNs with persistent fluorescent signal, detectable using the FireFly system, for two days post-injection. In conclusion, these findings suggest that a phase I trial in human subjects is warranted, and that a long-term goal of an intra-operative administration of non-radioactive fluorescent-labeled Tilmanocept is possible.


Assuntos
Neoplasias do Endométrio/cirurgia , Imagem Molecular/métodos , Procedimentos Cirúrgicos Robóticos , Neoplasias Uterinas/cirurgia , Animais , Modelos Animais de Doenças , Neoplasias do Endométrio/diagnóstico por imagem , Neoplasias do Endométrio/patologia , Feminino , Corantes Fluorescentes/uso terapêutico , Humanos , Excisão de Linfonodo , Linfonodos/patologia , Linfonodos/cirurgia , Metástase Linfática , Imagem Óptica/métodos , Pelve/diagnóstico por imagem , Pelve/patologia , Pelve/cirurgia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Linfonodo Sentinela/diagnóstico por imagem , Biópsia de Linfonodo Sentinela/métodos , Suínos , Pentetato de Tecnécio Tc 99m/administração & dosagem , Neoplasias Uterinas/diagnóstico por imagem , Neoplasias Uterinas/patologia
11.
IEEE Trans Med Imaging ; 37(1): 222-229, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28829305

RESUMO

An on-demand long-lived ultrasound contrast agent that can be activated with single pulse stimulated imaging (SPSI) has been developed using hard shell liquid perfluoropentane filled silica 500-nm nanoparticles for tumor ultrasound imaging. SPSI was tested on LnCAP prostate tumor models in mice; tumor localization was observed after intravenous (IV) injection of the contrast agent. Consistent with enhanced permeability and retention, the silica nanoparticles displayed an extended imaging lifetime of 3.3±1 days (mean±standard deviation). With added tumor specific folate functionalization, the useful lifetime was extended to 12 ± 2 days; in contrast to ligand-based tumor targeting, the effect of the ligands in this application is enhanced nanoparticle retention by the tumor. This paper demonstrates for the first time that IV injected functionalized silica contrast agents can be imaged with an in vivo lifetime ~500 times longer than current microbubble-based contrast agents. Such functionalized long-lived contrast agents may lead to new applications in tumor monitoring and therapy.


Assuntos
Meios de Contraste/química , Nanopartículas/química , Ultrassonografia/métodos , Animais , Meios de Contraste/farmacocinética , Masculino , Camundongos , Microbolhas , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Distribuição Tecidual
12.
J Nucl Med ; 58(4): 547-553, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28153955

RESUMO

The primary objective was to test the ability of a laparoscopic camera system to detect the fluorescent signal emanating from sentinel lymph nodes (SLNs) approximately 2 d after injection and imaging of a positron-emitting molecular imaging agent into the submucosa of the porcine urinary bladder. Methods: Three female pigs underwent a submucosal injection of the bladder with fluorescent-tagged tilmanocept, radiolabeled with both 68Ga and 99mTc. One hour after injection, a pelvic PET/CT scan was acquired for preoperative SLN mapping. Approximately 36 h later, robotic SLN mapping was performed using a fluorescence-capable camera system. After identification of the fluorescent lymph nodes, a pelvic lymph node dissection was completed with robotic assistance. All excised nodal packets (n = 36) were assayed for 99mTc activity, which established a lymph node as an SLN. 99mTc activity was also used to calculate the amount of dye within each lymph node. Results: All of the SLNs defined by the ex vivo γ-well assay of 99mTc activity were detected by fluorescence mode imaging. The time between injection and robotic SLN mapping ranged from 32 to 38 h. A total of 5 fluorescent lymph nodes were detected; 2 pigs had 2 fluorescent lymph nodes and 1 pig exhibited a single lymph node. Four of the 5 SLNs exhibited increased SUVs of 12.4-139.0 obtained from PET/CT. The dye content of the injection sites ranged from 371 to 1,441 pmol, which represented 16.5%-64.1% of the injected dose; the amount of dye within the SLNs ranged from 8.5 to 88 pmol, which was equivalent to 0.38%-3.91% of the administered dose. Conclusion: Fluorescent-labeled 68Ga-tilmanocept allows for PET imaging and real-time intraoperative detection of SLNs during robotic surgery.


Assuntos
Imagem Óptica , Linfonodo Sentinela/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem , Animais , Estudos de Viabilidade , Feminino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Suínos
13.
ACS Biomater Sci Eng ; 3(8): 1780-1787, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-33429658

RESUMO

Ultrasound (US) guided medical devices placement is a widely used clinical technology, yet many factors affect the visualization of these devices in the human body. In this research, an ultrasound-activated film was developed that can be coated on the surface of medical devices. The film contains 2 µm silica microshells and poly(methyl 2-cyanoacrylate) (PMCA) adhesive. The air sealed in the hollow space of the microshells acted as the US contrast agent. Ozone and perfluorooctyltriethoxysilane (PFO) were used to treat the surface of the film to enhance the US signals and provide durable antifouling properties for multiple passes through tissue, consistent with the dual oleophobic and hydrophobic nature of PFO. In vitro and in vivo tests showed that hypodermic needles and tumor marking wires coated with US activated film gave strong and persistent color Doppler signals. This technology can significantly improve the visibility of medical devices and the accuracy of US guided medical device placement.

14.
ACS Appl Mater Interfaces ; 9(2): 1719-1727, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28001041

RESUMO

Ultrasound imaging is a safe, low-cost, and in situ method for detecting in vivo medical devices. A poly(methyl-2-cyanoacrylate) film containing 2 µm boron-doped, calcined, porous silica microshells was developed as an ultrasound imaging marker for multiple medical devices. A macrophase separation drove the gas-filled porous silica microshells to the top surface of the polymer film by controlled curing of the cyanoacrylate glue and the amount of microshell loading. A thin film of polymer blocked the wall pores of the microshells to seal air in their hollow core, which served as an ultrasound contrast agent. The ultrasound activity disappeared when curing conditions were modified to prevent the macrophase segregation. Phase segregated films were attached to multiple surgical tools and needles and gave strong color Doppler signals in vitro and in vivo with the use of a clinical ultrasound imaging instrument. Postprocessing of the simultaneous color Doppler and B-mode images can be used for autonomous identification of implanted surgical items by correlating the two images. The thin films were also hydrophobic, thereby extending the lifetime of ultrasound signals to hours of imaging in tissues by preventing liquid penetration. This technology can be used as a coating to guide the placement of implantable medical devices or used to image and help remove retained surgical items.


Assuntos
Técnicas Biossensoriais , Meios de Contraste , Porosidade , Dióxido de Silício , Ultrassonografia
15.
Nanomedicine ; 13(3): 933-942, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27840314

RESUMO

Silica nanoparticles are an emerging class of biomaterials which may be used as diagnostic and therapeutic tools for biomedical applications. In particular, hollow silica nanoshells are attractive due to their hollow core. Approximately 70% of a 500 nm nanoshell is hollow, therefore more particles can be administered on a mg/kg basis compared to solid nanoparticles. Additionally, their nanoporous shell permits influx/efflux of gases and small molecules. Since the size, shape, and composition of a nanoparticle can dramatically alter its toxicity and biodistribution, the toxicology of these nanomaterials was assessed. A single dose toxicity study was performed in vivo to assess the toxicity of 500 nm iron-doped silica nanoshells at clinically relevant doses of 10-20 mg/kg. This study showed that only a trace amount of silica was detected in the body 10 weeks post-administration. The hematology, biochemistry and pathological results show that the nanoshells exhibit no acute or chronic toxicity in mice.


Assuntos
Ferro/farmacocinética , Ferro/toxicidade , Nanoconchas/análise , Nanoconchas/toxicidade , Dióxido de Silício/farmacocinética , Dióxido de Silício/toxicidade , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/análise , Materiais Biocompatíveis/farmacocinética , Materiais Biocompatíveis/toxicidade , Feminino , Ferro/administração & dosagem , Ferro/análise , Camundongos , Nanoconchas/administração & dosagem , Nanoconchas/ultraestrutura , Tamanho da Partícula , Dióxido de Silício/administração & dosagem , Dióxido de Silício/análise , Distribuição Tecidual
17.
J Surg Res ; 190(2): 391-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972734

RESUMO

BACKGROUND: High intensity-focused ultrasound (HIFU) is an alterative ablative technique currently being investigated for local treatment of breast cancer and fibroadenomas. Current HIFU therapies require concurrent magnetic resonance imaging monitoring. Biodegradable 500 nm perfluoropentane-filled iron-silica nanoshells have been synthesized as a sensitizing agent for HIFU therapies, which aid both mechanical and thermal ablation of tissues. In low duty cycle high-intensity applications, rapid tissue damage occurs from mechanical rather than thermal effects, which can be monitored closely by ultrasound obviating the need for concurrent magnetic resonance imaging. MATERIALS AND METHODS: Iron-silica nanoshells were synthesized by a sol-gel method on polystyrene templates and calcined to yield hollow nanoshells. The nanoshells were filled with perfluoropentane and injected directly into excised human breast tumor, and intravenously (IV) into healthy rabbits and Py8119 tumor-bearing athymic nude mice. HIFU was applied at 1.1 MHz and 3.5 MPa at a 2% duty cycle to achieve mechanical ablation. RESULTS: Ex vivo in excised rabbit livers, the time to visually observable damage with HIFU was 20 s without nanoshells and only 2 s with nanoshells administered IV before sacrifice. Nanoshells administered IV into nude mice with xenograft tumors were activated in vivo by HIFU 24 h after administration. In this xenograft model, applied HIFU resulted in a 13.6 ± 6.1 mm(3) bubble cloud with the IV injected particles and no bubble cloud without particles. CONCLUSIONS: Iron-silica nanoshells can reduce the power and time to perform HIFU ablative therapy and can be monitored by ultrasound during low duty cycle operation.


Assuntos
Neoplasias da Mama/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade/instrumentação , Nanoconchas/uso terapêutico , Animais , Feminino , Fibroadenoma/terapia , Fluorocarbonos , Humanos , Ferro , Camundongos , Camundongos Nus , Coelhos , Dióxido de Silício
18.
J Am Chem Soc ; 135(50): 18710-3, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24308273

RESUMO

Matrix metalloproteinase enzymes, overexpressed in HT-1080 human fibrocarcinoma tumors, were used to guide the accumulation and retention of an enzyme-responsive nanoparticle in a xenograft mouse model. The nanoparticles were prepared as micelles from amphiphilic block copolymers bearing a simple hydrophobic block and a hydrophilic peptide brush. The polymers were end-labeled with Alexa Fluor 647 dyes leading to the formation of labeled micelles upon dialysis of the polymers from DMSO/DMF to aqueous buffer. This dye-labeling strategy allowed the presence of the retained material to be visualized via whole animal imaging in vivo and in ex vivo organ analysis following intratumoral injection into HT-1080 xenograft tumors. We propose that the material is retained by virtue of an enzyme-induced accumulation process whereby particles change morphology from 20 nm spherical micelles to micrometer-scale aggregates, kinetically trapping them within the tumor. This hypothesis is tested here via an unprecedented super-resolution fluorescence analysis of ex vivo tissue slices confirming a particle size increase occurs concomitantly with extended retention of responsive particles compared to unresponsive controls.


Assuntos
Enzimas/química , Microscopia de Fluorescência/métodos , Nanopartículas , Neoplasias/metabolismo , Animais , Linhagem Celular , Xenoenxertos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos
19.
Biomaterials ; 34(37): 9559-65, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24034499

RESUMO

The use of microbubbles as ultrasound contrast agents is one of the primary methods to diagnose deep venous thrombosis. However, current microbubble imaging strategies require either a clot sufficiently large to produce a circulation filling defect or a clot with sufficient vascularization to allow for targeted accumulation of contrast agents. Previously, we reported the design of a microbubble formulation that modulated its ability to generate ultrasound contrast from interaction with thrombin through incorporation of aptamer-containing DNA crosslinks in the encapsulating shell, enabling the measurement of a local chemical environment by changes in acoustic activity. However, this contrast agent lacked sufficient stability and lifetime in blood to be used as a diagnostic tool. Here we describe a PEG-stabilized, thrombin-activated microbubble (PSTA-MB) with sufficient stability to be used in vivo in circulation with no change in biomarker sensitivity. In the presence of actively clotting blood, PSTA-MBs showed a 5-fold increase in acoustic activity. Specificity for the presence of thrombin and stability under constant shear flow were demonstrated in a home-built in vitro model. Finally, PSTA-MBs were able to detect the presence of an active clot within the vena cava of a rabbit sufficiently small as to not be visible by current non-specific contrast agents. By activating in non-occlusive environments, these contrast agents will be able to detect clots not diagnosable by current contrast agents.


Assuntos
Aptâmeros de Nucleotídeos , Meios de Contraste , Microbolhas , Trombina/metabolismo , Trombose Venosa/diagnóstico por imagem , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Coagulação Sanguínea , Meios de Contraste/química , Meios de Contraste/metabolismo , Feminino , Coelhos , Ultrassonografia , Trombose Venosa/metabolismo
20.
ACS Nano ; 7(7): 6367-77, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23802554

RESUMO

Perfluoropentane gas filled iron-silica nanoshells have been developed as stationary ultrasound contrast agents for marking tumors to guide surgical resection. It is critical to establish their long-term imaging efficacy, as well as biodistribution. This work shows that 500 nm Fe-SiO2 nanoshells can be imaged by color Doppler ultrasound over the course of 10 days in Py8119 tumor bearing mice. The 500 nm nonbiodegradable SiO2 and biodegradable Fe-SiO2 nanoshells were functionalized with diethylenetriamine pentaacetic acid (DTPA) ligand and radiolabeled with (111)In(3+) for biodistribution studies in nu/nu mice. The majority of radioactivity was detected in the liver and kidneys following intravenous (IV) administration of nanoshells to healthy animals. By contrast, after nanoshells were injected intratumorally, most of the radioactivity remained at the injection site; however, some nanoshells escaped into circulation and were distributed similarly as those given intravenously. For intratumoral delivery of nanoshells and IV delivery to healthy animals, little difference was seen between the biodistribution of SiO2 and biodegradable Fe-SiO2 nanoshells. However, when nanoshells were administered IV to tumor bearing mice, a significant increase was observed in liver accumulation of SiO2 nanoshells relative to biodegradable Fe-SiO2 nanoshells. Both SiO2 and Fe-SiO2 nanoshells accumulate passively in proportion to tumor mass, during intravenous delivery of nanoshells. This is the first report of the biodistribution following intratumoral injection of any biodegradable silica particle, as well as the first report demonstrating the utility of DTPA-(111)In labeling for studying silica nanoparticle biodistributions.


Assuntos
Ferro/análise , Nanopartículas/análise , Neoplasias Experimentais/química , Ácido Pentético , Cintilografia/métodos , Dióxido de Silício/análise , Ultrassonografia Doppler em Cores/métodos , Animais , Linhagem Celular Tumoral , Radioisótopos de Índio , Injeções Intralesionais , Ferro/administração & dosagem , Ferro/química , Camundongos , Camundongos Nus , Nanopartículas/química , Neoplasias Experimentais/diagnóstico , Compostos Radiofarmacêuticos , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...