Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reproduction ; 167(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971748

RESUMO

In brief: Adipolin (C1QTNF12) has been described as a regulator of metabolism and is linked with the pathophysiology of PCOS. In this study, for the first time, we show the expression of C1QTNF12 in granulosa cells and its positive effect on porcine granulosa cell proliferation and steroid synthesis. Abstract: Adipolin (C1QTNF12) is a recently discovered adipokine that plays an important role in glucose and insulin level regulation. Previous studies showed its reduced level in serum of women suffering from polycystic ovarian syndrome; however, whether C1QTNF12 regulates ovary function is still unknown. The aim of the study was first to determine the level of C1QTNF12 in the porcine ovarian follicles granulosa cells (Gc) and then its in vitro effect on proliferation and steroidogenesis as well as phosphorylation of several signalling pathways. Our results showed that the expression of C1QTNF12 was dependent on follicle size and was higher at the mRNA and protein level in Gc of small than large follicles from both prepubertal and mature animals. Similar pattern was observed for C1QTNF12 concentration in porcine follicular fluid. Additionally, we observed immunolocalisation of C1QTNF12 in Gc, theca cells and oocytes. We found that C1QTNF12 stimulated porcine Gc proliferation via the activation of protein kinase B (AKT). Moreover, C1QTNF12 enhanced progesterone, testosterone and oestradiol secretion by elevating STAR, CYP11A1, HSD3B and CYP19A1 mRNA expression and by activation of MAP3/1 pathway. Additionally, C1QTNF12 increased pMAP3/1-to-MAP3/1 protein expression ratio and enhanced IGF1-induced pTyr-IGF1Rß-to-IGFR1ß and pMAP3/1-to-MAP3/1 protein ratios. Taken together, C1QTNF12 could act directly on proliferation and steroid synthesis and serve as an important factor in in vivo ovarian follicle function, possibly regulating the course of folliculogenesis.


Assuntos
Adipocinas , Síndrome do Ovário Policístico , Feminino , Animais , Suínos , Humanos , Adipocinas/metabolismo , Células da Granulosa/metabolismo , Progesterona/metabolismo , Síndrome do Ovário Policístico/metabolismo , RNA Mensageiro/metabolismo , Reprodução , Estradiol/farmacologia
2.
PLoS One ; 16(2): e0246750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630916

RESUMO

Genetic selection in parental broiler breeders has increased their susceptibility to metabolic disorders and reproductive dysfunction. We have recently shown that maternal dietary grape seed extract (GSE) supplementation in hens improves fertility parameters, egg quality, oxidative stress in different tissues and the quality of F1 chicks. Here, we analysed the growth and fertility (both female and male) of the F1 generation animals and the quality of their offspring (F2 generation). Eggs issued from hens supplemented with GSE presented lower ROS production than control hens, suggesting a change in the embryonic environment. However, this did not affect the growth nor the body composition of male and female F1s from hatching to adulthood (37 weeks of age). At 37 weeks of age, the biochemistry analysis of the GSE-F1 muscle has revealed an increase in sensitivity to oxidative stress and a slight change in lipid composition. Both male and female F1-GSE groups presented a delay in puberty with a lower testis volume at 30 weeks of age and lower ovary development at 26 weeks of age. Adult GSE-F1 males did not present histological alterations of seminiferous tubules or semen production, but the semen quality was degraded due to higher oxidative stress and DNA-damaged spermatozoa compared with control F1 animals. In adult GSE-F1 females, despite the delay in puberty, the females laid more eggs of better quality (fewer broken eggs and a higher hatching rate). At hatching, the weight of the chicks from GSE-F1 females was reduced, and this effect was stronger in F2 male chicks (F2) compared with F2 control chicks (F2), because of the lower muscle volume. In conclusion, we can raise the hypothesis that maternal dietary GSE supplementation produces eggs with change in embryonic metabolism, which may affect in adulthood the fertility. The data obtained from the F1-GSE group pointed to a sex-specific modification with higher egg quality in females but semen sensitive to stress in males. Finally, male F2 chicks were leaner than control chicks. Thus, maternal dietary grape seed extract (GSE) supplementation in hens may impact on the fertility of the offspring in a sex-specific manner in subsequent generations.


Assuntos
Cruzamento/métodos , Galinhas/crescimento & desenvolvimento , Fertilidade/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Hereditariedade/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Animais , Suplementos Nutricionais , Ovos/normas , Feminino , Fertilidade/fisiologia , Masculino , Desenvolvimento Muscular/efeitos dos fármacos , Ovário/citologia , Ovário/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reprodução , Sêmen/metabolismo , Análise do Sêmen , Maturidade Sexual , Testículo/citologia , Testículo/efeitos dos fármacos , Tomografia Computadorizada por Raios X
3.
Gen Comp Endocrinol ; 304: 113721, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493505

RESUMO

Unlike mammals, the role of adipokines and more particularly of chemerin in the regulation of food intake is totally unknown in avian species. Here we investigated the effect of chemerin on the food and water consumption and on the body weight in chicken. We studied the effects on the plasma glucose and insulin concentrations and the hypothalamic neuropeptides and AMPK signaling pathway. Female broiler chickens were intraperitoneally injected, daily for 13 days with either vehicle (saline; n = 25) or chemerin (8 µg/kg; n = 25 and 16 µg/kg; n = 25). Food and water intakes were recorded 24 h after each administration. Overnight fasted animals were sacrificed at day 13 (D13), 24 h after the last injection and hypothalamus and left cerebral hemispheres were collected. Chemerin and its receptors protein levels were determined by western-blot. Gene expression of neuropeptide Y (Npy), agouti-related peptide (Agrp), corticotrophin releasing hormone (Crh), pro-opiomelanocortin (Pomc), cocaine and amphetamine-regulated transcript (Cart) and Taste 1 Receptor Member 1 (Tas1r1) were evaluated by RT-qPCR. In chicken, we found that the protein amount of chemerin, CCRL2 and GPR1 was similar in left cerebral hemisphere and hypothalamus whereas CMKLR1 was higher in hypothalamus. Chemerin administration (8 and 16 µg/kg) decreased both food intake and body weight compared to vehicle without affecting water intake and the size or volume of different brain subdivisions as determined by magnetic resonance imaging. It also increased plasma insulin levels whereas glucose levels were decreased. These data were associated with an increase in Npy and Agrp expressions and a decrease in Crh, Tas1r1 mRNA expression within the hypothalamus. Furthermore, chemerin decreased hypothalamic CMKLR1 protein expression and AMPK activation. Taken together, these results support that chemerin could be a peripheral appetite-regulating signal through modulation of hypothalamic peptides expression in chicken.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal , Quimiocinas/farmacologia , Galinhas , Ingestão de Alimentos , Neuropeptídeos , Animais , Feminino , Expressão Gênica , Hipotálamo/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Pró-Opiomelanocortina/genética , Transdução de Sinais
4.
Int J Mol Sci ; 21(24)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302416

RESUMO

Oocyte maturation is a critical stage in embryo production and female reproduction. The aims of this study were to determine: (i) the mRNA and protein expression of vaspin and its receptor 78-kDa glucose-regulated (GRP78) in porcine cumulus-oocyte complexes (COCs) by real-time PCR and Western blot analysis, respectively, and their localisation by immunofluorescence; and (ii) the effects of vaspin on in vitro oocyte maturation (IVM) and the involvement of mitogen ERK1/2 (MAP3/1)- and AMPKα (PRKAA1)-activated kinases in the studied processes. Porcine COCs were matured in vitro for 22 h or 44 h with vaspin at a dose of 1 ng/mL and nuclear maturation assessed by Hoechst 33342 or DAPI staining and the measurement of progesterone (P4) level in the maturation medium. We showed that vaspin and GRP78 protein expression increased in oocytes and cumulus cells after IVM. Moreover, vaspin enhanced significantly porcine oocyte IVM and P4 concentration, as well as MAP3/1 phosphorylation, while decreasing PRKAA1. Using pharmacological inhibitors of MAP3/1 (PD98059) and PRKAA1 (Compound C), we observed that the effect of vaspin was reversed to the control level by all studied parameters. In conclusion, vaspin, by improving in vitro oocyte maturation via MAP3/1 and PRKAA1 kinase pathways, can be a new factor to improve in vitro fertilisation protocols.


Assuntos
Sistema de Sinalização das MAP Quinases , Oócitos/metabolismo , Oogênese , Serpinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Feminino , Proteínas de Choque Térmico/metabolismo , Técnicas de Maturação in Vitro de Oócitos , MAP Quinase Quinase Quinases/metabolismo , Oócitos/citologia , Serpinas/genética , Suínos
5.
Gen Comp Endocrinol ; 299: 113584, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32827511

RESUMO

In pig, backfat deposition is strongly related to the growth and reproductive performance. However, the molecular regulatory mechanisms of adipose tissue are not clearly understood. Adipose tissue is now recognized as an important endocrine organ that secretes a variety of factors including adipokines. However, the regulation of expression pattern of these adipokines in both plasma and visceral white adipose tissue (WAT) in lean and fat pig is unclear. In the present study, we used two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting backfat thickness and sexual maturity age. Using specific ELISA assays, we determined the plasma profile of eight adipokines, leptin, adiponectin, visfatin, apelin, chemerin, resistin, omentin and vaspin in LW and MS sows. By RT-qPCR and western-blot we also investigated the mRNA and protein levels of these adipokines and their cognate receptors (LEPR, ADIPOR1, ADIPOR2, CMKLR1, CCRL2, GPR1, APLNR, TLR4, ROR1, CAP1 and HSPA5) in the peri renal WAT, respectively. At both plasma and peri renal WAT level, we found that the amounts of leptin, chemerin, resistin and vaspin were higher whereas those of adiponectin and omentin were lower in MS than LW sows. Plasma and adipose tissue visfatin and apelin levels were not different between the two breeds. Moreover, we noted that the variations of peri renal WAT adipokines observed between MS and LW were similar at the protein and mRNA level except for chemerin and apelin suggesting post-transcriptional modifications for these two adipokines. Finally, among the eight adipokines studied, we showed that only the plasma concentrations of leptin and chemerin were positively and those of adiponectin, negatively associated with the thickness of fat and opposite correlation was found for the onset of puberty in both LW and MS animals. Taken together, these results support a potential involvement of adipokines in WAT regulation and its link with the onset of the puberty in sows.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Puberdade/metabolismo , Animais , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Suínos
6.
Microorganisms ; 8(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731511

RESUMO

In poultry, the selection of broilers for growth performance has induced a deterioration in the health of the parental hens associated with poor reproductive efficiency. To improve these parameters, we administered to laying parental broiler hens a regular diet supplemented or not (Control) with a moderate (1%) or a high level (2%) of grape seed extract (GSE). The 1% GSE diet was administered from a young age (from 4 to 40 weeks of age) and the high level of 2% GSE was administered only during a 2-week period (from 38 to 40 weeks of age) in the laying period. The analysis of 40-week-old hens showed that 2% GSE displayed a reduction in the fat tissue and an improvement in fertility with heavier and more resistant eggs. Seven monomer phenolic metabolites of GSE were significantly measured in the plasma of the 2% GSE hens. GSE supplementation increased the relative abundance of the following bacteria populations: Bifidobacteriaceae, Lactobacilliaceae and Lachnospiraceae. In conclusion, a supplementation period of only 2 weeks with 2% GSE is sufficient to improve the metabolic and laying parameters of breeder hens through a modification in the microbiota.

7.
Cells ; 9(7)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630345

RESUMO

The chemokine chemerin is a novel adipokine involved in the regulation of energy metabolism but also female reproductive functions in mammals. Its effects on male fertility are less studied. Here, we investigated the involvement of chemerin in chicken male reproduction. Indeed, the improvement of the sperm of roosters is a challenge for the breeders since the sperm quantity and quality have largely decreased for several years. By using specific chicken antibodies, here we show that chemerin and its main receptor CMKLR1 (chemokine-like receptor 1) are expressed within the chicken testis with the lowest expression in adults as compared to the embryo or postnatal stages. Chemerin and CMKLR1 are present in all testicular cells, including Leydig, Sertoli, and germinal cells. Using in vitro testis explants, we observed that recombinant chicken chemerin through CMKLR1 inhibits hCG (human chorionic gonadotropin) stimulated testosterone production and this was associated to lower 3ßHSD (3beta-hydroxysteroid dehydrogenase) and StAR (steroidogenic acute regulatory protein) expression and MAPK ERK2 (Mitogen-Activated Protein Kinase Extracellular signal-regulated kinase 2) phosphorylation. Furthermore, we demonstrate that chemerin in seminal plasma is lower than in blood plasma, but it is negatively correlated with the percentage of motility and the spermatozoa concentration in vivo in roosters. In vitro, we show that recombinant chicken chemerin reduces sperm mass and individual motility in roosters, and this effect is abolished when sperm is pre-incubated with an anti-CMKLR1 antibody. Moreover, we demonstrate that fresh chicken sperm treated with chemerin and used for artificial insemination (AI) in hen presented a lower efficiency in terms of eggs fertility for the four first days after AI. Taken together, seminal chemerin levels are negatively associated with the rooster fertility, and chemerin produced locally by the testis or male tract could negatively affect in vivo sperm quality and testosterone production through CMKLR1.


Assuntos
Galinhas/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Embrião de Galinha , Gonadotropina Coriônica/farmacologia , Feminino , Fertilidade/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Receptores de Quimiocinas/metabolismo , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testosterona/biossíntese , Testosterona/metabolismo
8.
PLoS One ; 15(5): e0233169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32407420

RESUMO

In broiler hens, the genetic selection increased susceptibility to metabolic disorders and reproductive dysfunctions. In human ovarian cells, grape seed extracts (GSE) improved steroid production. Here, we investigated the effects of a GSE dietary supplementation on egg production and quality, fertility parameters, Reactive Oxygen Species (ROS) and steroid content in yolk egg associated to plasma adipokines in broiler hens. For this, we designed two in vivo experiments, the first one included three groups of hens: A (control), B and C (supplemented with GSE at 0.5% and 1% of the total diet composition, respectively, since week 4), and the second one used two groups of hens: A (control) and D (supplemented with GSE at 1% of the total diet composition since hatching). We assessed the egg production from 23th to 40th weeks and quality at 33th week. After artificial inseminations, the fertility parameters were calculated. In egg yolk, Reactive Oxygen Species (ROS) level and steroid production were evaluated by Ros-Glo H202 and ELISA assay, respectively. Expression of steroidogenic enzymes and adipokines and their receptors was determined by RT-qPCR in ovarian cells and plasma adipokines (RARRES2, ADIPOQ and NAMPT) were evaluated by specific ELISA assays. The fertility parameters and egg production were unaffected by GSE supplementation whatever the experiment (exp.). However, the rate of double-yolk eggs decreased for all GSE supplemented groups (exp. 1 P <0.01, exp.2, P<0.02). In exp.1, C group eggs were bigger and larger (P<0.0001) and the shell elasticity was higher for both B and C (P<0.0003) as compared to control. In the egg yolk, GSE supplementation in both exp. reduced ROS content and steroidogenesis consistent with a decrease in P450 aromatase and StAR mRNA expression and basal in vitro progesterone secretion in granulosa cells (P<0.001). Interestingly, in both exp. RARRES2 plasma levels were positively correlated while ADIPOQ and NAMPT plasma levels were negatively correlated, with steroids and ROS in yolk (P<0.0001). Taken together, maternal dietary GSE supplementation did not affect egg production and fertility parameters whereas it reduced ROS content and steroidogenesis in yolk egg. Furthermore, it ameliorated egg quality by decreasing the number of double-yolk eggs and by improving the size of normal eggs and the elasticity of the shell. Taken together, our data suggest the possibility of using dietary maternal GSE to improve egg quality.


Assuntos
Galinhas/fisiologia , Suplementos Nutricionais , Fertilidade/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Ovário/metabolismo , Óvulo/metabolismo , Reprodução/efeitos dos fármacos , Esteroides/biossíntese , Adipocinas/sangue , Animais , Galinhas/sangue , Galinhas/genética , Dieta , Gema de Ovo/efeitos dos fármacos , Gema de Ovo/metabolismo , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Ovário/efeitos dos fármacos , Oviposição/efeitos dos fármacos , Óvulo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Adipocina/genética , Receptores de Adipocina/metabolismo , Células Tecais/efeitos dos fármacos , Células Tecais/metabolismo
9.
PLoS One ; 15(4): e0231131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32282838

RESUMO

In reproductive hens, a feed restriction is an usual practice to improve metabolic and reproductive disorders. However, it acts a stressor on the animal. In mammals, grape seed extracts (GSE) reduces oxidative stress. However, their effect on endocrine and tissue response need to be deepened in reproductive hens. Here, we evaluated the effects of time and level of GSE dietary supplementation on growth performance, viability, oxidative stress and metabolic parameters in plasma and metabolic tissues in reproductive hens and their offsprings. We designed an in vivo trial using 4 groups of feed restricted hens: A (control), B and C (supplemented with 0.5% and 1% of the total diet composition in GSE since week 4, respectively) and D (supplemented with 1% of GSE since the hatch). In hens from hatch to week 40, GSE supplementation did not affect food intake and fattening whatever the time and dose of supplementation. Body weight was significantly reduced in D group as compared to control. In all hen groups, GSE supplementation decreased plasma oxidative stress index associated to a decrease in the mRNA expression of the NOX4 and 5 oxidant genes in liver and muscle and an increase in SOD mRNA expression. This was also associated to decreased plasma chemerin and increased plasma adiponectin and visfatin levels. Interestingly, maternal GSE supplementation increased the live body weight and viability of chicks at hatching and 10 days of age. This was associated to a decrease in plasma and liver oxidative stress parameters. Taken together, GSE maternal dietary supplementation reduces plasma and tissue oxidative stress associated to modulation of adipokines without affecting fattening in reproductive hens. A 1% GSE maternal dietary supplementation increased offspring viability and reduced oxidative stress suggesting a beneficial transgenerational effect and a potential use to improve the quality of the progeny in reproductive hens.


Assuntos
Criação de Animais Domésticos/métodos , Antioxidantes/administração & dosagem , Galinhas/crescimento & desenvolvimento , Suplementos Nutricionais , Extrato de Sementes de Uva/administração & dosagem , Adiponectina/sangue , Adiponectina/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Cruzamento/métodos , Quimiocinas/sangue , Quimiocinas/metabolismo , Galinhas/sangue , Dieta/efeitos adversos , Dieta/veterinária , Feminino , Troca Materno-Fetal/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Gravidez , Reprodução/fisiologia
10.
Int J Mol Sci ; 20(17)2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31466336

RESUMO

Reactive oxygen species (ROS) which lead to oxidative stress affect ovarian function. Grape seed extract (GSE) could be proposed as an effective antioxidant, particularly due to its proanthocyanidin content. In this study, we investigated a dose effect (0, 0.01, 0.1, 1, 10, 50, and 100 µg/mL) of GSE and proanthocyanidin B2 (GSPB2) on the ROS content, cell proliferation, cell viability, and steroidogenesis in both primary luteinized granulosa cells (hGC) and the tumor granulosa cell line (KGN). The levels of ROS were measured using ROS-Glo assay. Cell proliferation and viability were evaluated by [3H]-thymidine incorporation and Cell Counting Kit-8 (CCK8) assay, respectively. Steroid secretion was evaluated by radioimmunoassay. We also analyzed the cell cycle component protein level and signaling pathways by immunoblot and the NOX4 mRNA expression by RTqPCR. From 0.1 to 1 µg/mL, GSE and GSBP2 reduced the ROS cell content and the NOX4 mRNA levels, whereas, GSE and GSBP2 increased the ROS cell content from 50 to 100 µM in both hGC and KGN. GSE and GSPB2 treatments at 50 and 100 µg/mL induced a delay in G1 to S phase cell cycle progression as determined by fluorescence-activated cell sorting. Consequently, they reduced cell growth, cyclin D2 amount, and Akt phosphorylation, and they increased protein levels of p21 and p27 cyclin-dependent kinase inhibitors. These data were also associated with an increase in cell death that could be due to a reduction in Bcl-2-associated death promoter (BAD) phosphorylation and an increase in the cleaved-caspase-3 level. All these negative effects were not observed at lower concentrations of GSE and GSPB2 (0.01 to 10 µg/mL). Interestingly, we found that GSE and GSPB2 treatments (0.1 to 100 µg/mL) improved progesterone and estradiol secretion and this was associated with a higher level of the cholesterol carriers, StAR (steroidogenic acute regulatory protein), CREB (Cyclic adenosine monophosphate Response Element-binding protein), and MAPK ERK1/2 (Mitogen-Activated Protein Kinases Extracellular signal-Regulated Kinases 1/2) phosphorylation in both hGC and KGN cells. Taken together, GSE and GSPB2 (0.1-10 µg/mL) in vitro treatments decrease oxidative stress and increase steroidogenesis without affecting cell proliferation and viability in human granulosa cells.


Assuntos
Antioxidantes/farmacologia , Tumor de Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Extrato de Sementes de Uva/farmacologia , Proantocianidinas/farmacologia , Esteroides/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Ciclina D2/genética , Ciclina D2/metabolismo , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Feminino , Células da Granulosa/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Estresse Oxidativo
11.
Reproduction ; 158(2): 135-146, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063973

RESUMO

Vaspin, also known as visceral adipose tissue-derived serine protease inhibitor, is a member of the serine protease inhibitor family. Its expression is associated with obesity, insulin resistance and type 2 diabetes, and elevated concentration is observed in polycystic ovary syndrome. However, vaspin has never been studied in the ovary. Here, we identified vaspin in two prolific breeds of pigs: fat Meishan (MS) and lean Large White (LW). We then investigated the molecular mechanism involved in the regulation of its expression in response to gonadotropins, insulin, insulin-like growth factor type 1 (IGF-1) and steroids (progesterone, testosterone and oestradiol) in ovarian follicles cells. Using real-time PCR and Western blot, we found higher vaspin mRNA and protein expression in the ovarian follicles and adipose tissue at 10-12 days of the oestrous cycle in MS compared to LW. Moreover, vaspin expression, as well as its concentration in plasma and follicular fluid, decreased in ovarian follicles of LW during days of the oestrous cycle, while the opposite results were noted in MS. Immunohistochemistry showed vaspin in granulosa, theca, cumulus cells and oocytes as well as in adipocytes. Vaspin level in the ovary increased by gonadotropin, insulin, IGF-1 and steroids stimulation through kinases JAK/Stat, ERK1/2, PI3K and AMPK, as well as factor NF-κB. These findings all show vaspin expression and regulation in the pig ovary, indicating vaspin as a new regulator in female reproduction. Future studies will be necessary for understanding the role of vaspin on ovarian physiology providing new insights into the pathology of ovaries.


Assuntos
Tecido Adiposo Branco/metabolismo , Ciclo Estral , Folículo Ovariano/metabolismo , Serpinas/metabolismo , Animais , Feminino , Hormônios/fisiologia , Humanos , Fosfotransferases/metabolismo , Especificidade da Espécie , Suínos
12.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934676

RESUMO

Adiponectin is the most abundant plasma adipokine. It mainly derives from white adipose tissue and plays a key role in the control of energy metabolism thanks to its insulin-sensitising, anti-inflammatory, and antiatherogenic properties. In vitro and in vivo evidence shows that adiponectin could also be one of the hormones controlling the interaction between energy balance and fertility in several species, including humans. Indeed, its two receptors-AdipoR1 and AdipoR2-are expressed in hypothalamic⁻pituitary⁻gonadal axis and their activation regulates Kiss, GnRH and gonadotropin expression and/or secretion. In male gonads, adiponectin modulates several functions of both somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress. In females, it controls steroidogenesis of ovarian granulosa and theca cells, oocyte maturation, and embryo development. Adiponectin receptors were also found in placental and endometrial cells, suggesting that this adipokine might play a crucial role in embryo implantation, trophoblast invasion and foetal growth. The aim of this review is to characterise adiponectin expression and its mechanism of action in male and female reproductive tract. Further, since features of metabolic syndrome are associated with some reproductive diseases, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia, endometriosis, foetal growth restriction and ovarian and endometrial cancers, evidence regarding the emerging role of adiponectin in these disorders is also discussed.


Assuntos
Adiponectina/metabolismo , Fertilidade , Gametogênese , Adiponectina/química , Animais , Desenvolvimento Embrionário , Feminino , Humanos , Modelos Animais , Gravidez , Receptores de Adiponectina/metabolismo
13.
Int J Endocrinol ; 2018: 9170480, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977292

RESUMO

Apelin has been isolated from the bovine stomach extracts as an endogenous ligand of the previously orphan receptor APJ. Expression of the apelinergic system (apelin and APJ) was described in many organs where pleiotropic effects like regulation of food intake, body weight, or cardiovascular and immune function were described. Recent studies have shown that apelin also plays an important role in the regulation of female and male reproduction. Some data showed that the gene and protein of apelin/APJ are expressed in the hypothalamic-pituitary-gonad (HPG) axis tissue. Thus, apelin is synthesized locally in the hypothalamus, pituitary, ovaries, and testis of many species and has autocrine and/or paracrine effects. Most research indicates that apelin has an inhibitory effect on gonadotropin secretion and participates in the direct regulation of steroidogenesis, cell proliferation, and apoptosis in gonads. The article summarizes also results of a series of recent studies on the effect of apelin on reproduction pathology, like polycystic ovarian syndrome, endometriosis, and ovarian cancer. Many of these pathologies are still in critical need of therapeutic intervention, and recent studies have found that apelin can be targets in reproductive pathological states.

14.
Int J Endocrinol ; 2018: 4579734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018639

RESUMO

Reproduction is a complex and essential physiological process required by all species to produce a new generation. This process involves strict hormonal regulation, depending on a connection between the hypothalamus-pituitary-gonadal axis and peripheral organs. Metabolic homeostasis influences the reproductive functions, and its alteration leads to disturbances in the reproductive functions of humans as well as animals. For a long time, adipose tissue has been recognised as an endocrine organ but its ability to secrete and release hormones called adipokines is now emerging. Adipokines have been found to play a major role in the regulation of metabolic and reproductive processes at both central and peripheral levels. Leptin was initially the first adipokine that has been described to be the most involved in the metabolism/reproduction interrelation in mammals. In avian species, the role of leptin is still under debate. Recently, three novel adipokines have been discovered: adiponectin (ADIPOQ, ACRP30), visfatin (NAMPT, PBEF), and chemerin (RARRES2, TIG2). However, their mode of action between mammalian and nonmammalian species is different due to the different reproductive and metabolic systems. Herein, we will provide an overview of the structure and function related to metabolic and reproductive mechanisms of the latter three adipokines with emphasis on avian species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...